Advertisement

Perspectives and Future Trends

  • Colin Tong
Chapter

Abstract

Future materials need to meet great challenges for provisioning a clean, safe, secure, and sustainable energy supply to underpin a reasonable standard of living for the world’s population. Advanced structural and functional materials will evolve incrementally in fossil fuel and nuclear power generation, renewable power generation, energy storage, and electricity transmission with extended operating life, increased environmental resistance, and intelligent monitor systems. This chapter will present perspectives and future trends of novel materials development in advanced energy systems, including sustainability and materials security, metamaterials and nanomaterials, artificial photosynthesis, structural power composites, energy storage materials, and alternative hybrid systems.

References

  1. Abdi, F.F., Han, L., Smets, A.H.M., Zeman, M., Dam, B., van de Krol, R.: Efficient solar water splitting by enhanced charge separation in a bismuth vanadate silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013)Google Scholar
  2. Alexander, D.S.: Advanced energetics for aeronautical applications, NASA/CR-2003-212169, February 2003 (2003)Google Scholar
  3. Ali, M.H., Wu, B., Dougal, R.A.: An overview of SMES applications in power and energy systems. IEEE Trans. Sustain. Energy. 1, 38–47 (2010)Google Scholar
  4. Ausfelder, F.: Energy storage systems-the contribution of chemistry. https://dechema.de/dechema_media/DBG_PP_Energiespeicher+2015_A4_engl-p-20001695.pdf (2016). Accessed 19 Dec 2017
  5. Badwal, S.P.S., Giddey, S.S., Munnings, C., Bhatt, A.I., Hollenkamp, A.F.: Emerging electrochemical energy conversion and storage technologies. Front. Chem. 2, 79 (1–79 28 (2014)Google Scholar
  6. Bell, D.A.: Electrical noise: fundamentals and physical mechanism, p. 60. Van Nostrand, London (1960)Google Scholar
  7. Beradi, S., Brouet, S., Francas, L., Gimbert-Surinach, C., Guttentag, M., Richmond, C., Stoll, T., Llobet, A.: Molecular artificial photosynthesis. Chem. Soc. Rev. 43, 7501–7519 (2014)Google Scholar
  8. Boyer, T.: The Classical Vacuum. Sci. Am. 253(08), 70–78 (1985)Google Scholar
  9. Buckles, W., Hassenzahl, W.V.: Superconducting magnetic energy storage. Power Eng. Rev. 5, 16–20 (2000)Google Scholar
  10. Cantor, B., Grant, P.S., Johnston, C. (eds.): Automotive engineering: lightweight, functional, and novel materials. CRC Press, Boca Raton (2008)Google Scholar
  11. Chatzivasileiadi, A., Ampatzi, E., Knight, I.: Characteristics of electrical energy storage technologies and their applications in buildings. Renew. Sust. Energ. Rev. 25, 814–830 (2013)Google Scholar
  12. Chen, X., Li, C., Grätzel, M., Kostecki, R., Mao, S.S.: Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 41, 7909–7937 (2012)Google Scholar
  13. Chen, Z., Guo, B., Yang, Y., Cheng, C.: Metamaterials-based enhanced energy harvesting: a review. Physica B. 438, 1–8 (2014)Google Scholar
  14. Colson, C.M., Nehrir, M.H.: Evaluating the benefits of a hybrid solid oxide fuel cell combined heat and power plant for energy sustainability and emissions avoidance. IEEE Trans. Energy Convers. 26(1), 140–148 (2011)Google Scholar
  15. Dannon, H.V.: Zero point energy: thermodynamic equilibrium and Planck radiation law. Gauge Inst. J. 1(4), 1–8 (2005)Google Scholar
  16. Day, C.: Directive 2000/53/EC on end-of-life vehicles. http://ec.europa.eu/environment/waste/pdf/guidance_doc.pdf (2005). Accessed 10 Dec 2017
  17. Dimeas, A.L., Hatziargyriou, N.D.: Operation of a multiagent system for microgrid control. IEEE Trans. Power Syst. 20(3), 1447–1455 (2005)Google Scholar
  18. Dinca, M., Surendranath, Y., Nocera, D.G.: Nickel borate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl. Acad. Sci. U. S. A. 107(10), 337–10 341 (2012)Google Scholar
  19. Du, P., Eisenberg, R.: Catalysts made of earth abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ. Sci. 5, 6012–6021 (2012)Google Scholar
  20. Farret, F. A., M. G. Simoes, M. G.: Integration of alternative sources of energy. John Wiley Press, Hoboken, pp. 129. (2006)Google Scholar
  21. Fischer, M., Bruzzano, S., Egenolf-Jonkmanns, B., Zeidler-Fandrich, B., Wack, H., Deerberg, G.: Thermal storage by thermoreversible chemical reaction systems. Energy Procedia. 48, 327–336 (2014)Google Scholar
  22. Forward, R.L.: Extracting electrical energy from the vacuum by cohesion of charged foliated conductors. Phys. Rev. B. 30, 1700–1702 (1984)Google Scholar
  23. Frischmann, P.D., Mahata, K., Wurthner, F.: Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chem. Soc. Rev. 42, 1847–1870 (2013)Google Scholar
  24. Froning, H., Roach, R.: Preliminary simulations of vehicle interactions with the quantum vacuum by fluid dynamic approximations. AIAA 38th Joint Propulsion Conference & Exhibit. AIAA-2002-3925.52236 (2002). doi: https://doi.org/10.2514/6.2002-3925. ISBN 978-1-62410-115-1
  25. Gershenfeld, N., Krikorian, R., Cohen, D.: The Internet of things. Sci. Am. 291, 76–81 (2004)Google Scholar
  26. Ghofrani, M., Hosseini, N.N.: Optimizing hybrid renewable energy systems: a review. In: Zobaa, A.F., Afifi, S.N., Pisica, I. (eds.) Sustainable energy-technological issues, applications and case studies, pp. 161–176. InTech, London (2016)., ISBN 978-953-51-2840-3, Print ISBN 978-953-51-2839-7Google Scholar
  27. Giraud, F., Salameh, Z.M.: Steady-state performance of a grid connected roof top hybrid wind-photovoltaic power system with battery storage. IEEE Trans. Energy Convers. 16(1), 1–7 (2001)Google Scholar
  28. Gould, C.R., Bingham, C.M., Stone, D.A., Bentley, P.: New battery model and state-of-health determination through subspace parameter estimation and state-observer techniques. IEEE Trans. Veh. Technol. 58(8), 3905–3916 (2009)Google Scholar
  29. Grant, P.: New and advanced materials. Future of Manufacturing Project: Evidence Paper 10. Foresight, Government Office for Science. www.bis.gov.uk/foresight (2013). Accessed 09 Dec 2017
  30. de Groot, H.J.M.: Artificial photosynthesis is going to be the backbone of energy supply. Bio Based Press. http://www.biobasedpress.eu/2013/01/huub-de-groot-artificialphotosynthesis-is-going-to-be-the-backbone-of-energy-supply/ (2013). Accessed 16 Dec 2017
  31. Haisch, B., Moddel, G.: Quantum vacuum energy extraction. United States Patent No. 7,379,286 (2008)Google Scholar
  32. Hu, S., Xiang, C., Haussener, S., Berger, A.D., Lewis, N.S.: An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 2984–2993 (2013)Google Scholar
  33. Iavicoli, I., Leso, V., Ricciardi, W., Hodson, L.L., Hoover, M.D.: Opportunities and challenges of nanotechnology in the green economy. Environ. Health. 13, 78 (2014)Google Scholar
  34. Kaviani, A.K., Riahy, G.H., Kouhsari, S.H.M.: Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages. Renew. Energy. 34, 2380–2390 (2009)Google Scholar
  35. Kivshar, Y.S.: From metamaterials to metasurfaces and metadevices. Nanosyst.: Phys. Chem. Math. 6(3), 346–352 (2015)Google Scholar
  36. Kumar, A., Vemula, P.K., Ajayan, P.M., John, G.: Silver- nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 7, 236–241 (2008)Google Scholar
  37. Lee, M., Yang, R., Li, C., Wang, Z.L.: Nanowire−quantum dot hybridized cell for harvesting sound and solar energies. J. Phys. Chem. Lett. 1, 2929–2935 (2010)Google Scholar
  38. Leonhardt, U.: Optical metamaterials: invisibility cup. Nat. Photonics. 1(4), 207–208 (2007)Google Scholar
  39. Lim, Y., Al-Atabi, M., Williams, R.A.: Liquid air as an energy storage: a review. J. Eng. Sci. Technol. 11(4), 496–515 (2016)Google Scholar
  40. Lindemann, P.: The free energy secrets of cold electricity. Clear Tech, Inc, Saskatoon (2001)Google Scholar
  41. Liu, M.: Nonlinear dynamics in chiral torsional metamaterials. Ph.D. thesis. Australian National University, Canberra, Australia (2015)Google Scholar
  42. Luther, W.: Application of nanotechnologies in the energy sector. HA Hessen Agentur GmbH, Wiesbaden, Germany (2008)Google Scholar
  43. Massie, U.W.: Gravity and zero point energy. Phys. Procedia. 38, 280–287 (2012)Google Scholar
  44. Mead, F. B., Nachamkin, J.: System for Converting Electromagnetic Radiation Energy to Electrical Energy,” United States Patent No. 5,590,031 (1996)Google Scholar
  45. Milonni, P.W.: The quantum vacuum, p. 11. Academic Press, Boston (1994)Google Scholar
  46. Moddel, G.: Assessment of proposed electromagnetic quantum vacuum energy extraction methods. https://arxiv.org/ftp/arxiv/papers/0910/0910.5893.pdf (2009). Accessed 29 Dec 2017
  47. Muñoz, A.S., Garcia, M., Gerlich, M.: Overview of storage technologies. http://www.h2020-project-sensible.eu/documents/overview-of-storage-technologies.pdf (2016). Accessed 18 Dec 2017
  48. Muthukumar, P.: Thermal energy storage: Methods and materials. Indian Institute of Technology Guwahati, Sevilla, Spain (2011)Google Scholar
  49. Nehrir, M.H., Wang, C., Strunz, K., Aki, H., Ramakumar, R., Bing, J., Miao, Z., Salameh, Z.: A review of hybrid renewable/alternative energy systems for electric power generation: configurations, control, and applications. IEEE Trans. Sust. Energy. 2(4), 392–403 (2011)Google Scholar
  50. Notarianni, M., Liu, J., Vernon, K., Motta, N.: Synthesis and applications of carbon nanomaterials for energy generation and storage. Beilstein J. Nanotechnol. 7, 149–196 (2016)Google Scholar
  51. Ocakoglu, K., Joya, K.S., Harputlu, E., Tarnowska, A., Gryko, D.T.: A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl functionalized metallochlorin nano-aggregates. Nanoscale. 6, 9625–9631 (2014)Google Scholar
  52. Orimo, S., Nakamori, Y., Eliseo, J.R., Züttel, A., Jensen, C.M.: Complex hydrides for hydrogen storage. Chem. Rev. 107, 4111–4132 (2007)Google Scholar
  53. Peck, M., Chipman, R.: Industrial energy and material efficiency: hat role for policies? In: Industrial development for the 21st century: sustainable development perspectives, pp. 333–386. United Nations, New York (2007)Google Scholar
  54. Pinto, F.: Engine cycle of an optically controlled vacuum energy transducer. Phys. Rev. B. 60(14), 740–14,755 (1999)Google Scholar
  55. Porter, D., Guan, J.,Vollrath, F.: Spider silk: super material or thin fibre? Adv. Mater. 25(9), 1275–1279 (2013)Google Scholar
  56. Prigogine, I.: Time, Structure and Fluctuations, Nobel Lecture, December 8, 1977 (1977)Google Scholar
  57. Purchase, R.L., de Groot, H.J.M.: Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield. Interface Focus. 5, 20150014 (2015)Google Scholar
  58. Purchase, R., Vriend, H., de Groot, H., Harmsen, P.F.H., Bos, H.L.: Artificial photosynthesis: for the conversion of sunlight to fuel. Leiden: Leiden University (Groene grondstoffen). http://library.wur.nl/WebQuery/wurpubs/fulltext/353079 (2015). Accessed 14 Dec 2017
  59. Qiao, Y., Li, C.M.: Nanostructured catalysts in fuel cells. J. Mater. Chem. 21, 4027–4036 (2011)Google Scholar
  60. REACH: Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency (2006)Google Scholar
  61. Sabihuddin, S., Kiprakis, A.E., Mueller, M.: A numerical and graphical review of energy storage technologies. Energies. 8, 172–216 (2015)Google Scholar
  62. Sao, C.K., Lehn, P.W.: A transformerless energy storage system based on a cascade multilevel PWM converter with star configuration. IEEE Trans. Ind. Appl. 44(5), 1621–1630 (2008)Google Scholar
  63. Sharma, P., Bhatti, T.S.: A review on electrochemical double-layer capacitors. Energy Convers. Manag. 2010, 2901–2912 (2010)Google Scholar
  64. Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D.: Review on thermal energy storage with phase change materials and applications. Renew. Sust. Energ. Rev. 13, 318–345 (2009)Google Scholar
  65. Soukoulis, C., Wegener, M.: Past achievements and future challenges in the development of three dimensional photonic metamaterials. Nat. Photonics. 5, 523–531 (2011)Google Scholar
  66. Strunz, K., Louie, H.: Cache energy control for storage: power system integration and education based on analogies derived from computer engineering. IEEE Trans. Power Syst. 24(1), 12–19 (2009)Google Scholar
  67. Tong, X.C.: Functional metamaterials and metadevices. Springer, New York (2017)Google Scholar
  68. Valone, T.: Scalar potentials, fields and waves. Integrity Research Institute, Washington, DC (1999)Google Scholar
  69. Valone, T.F.: Practical conversion of zero-point energy-feasibility study of zero-point energy extraction from the quantum vacuum for the performance of useful work. Integrity Research Institute, Beltsville, MD (2005). ISBN 0-9641070-8-2Google Scholar
  70. Wang, Z.L., Wu, W.: Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 51, 2–24 (2012)Google Scholar
  71. Wang, M., Han, K., Zhang, S., Sun, L.: Integration of organometallic complexes with semiconductors and other nanomaterials for photocatalytic H2 production. Coord. Chem. Rev. 287, 1–14 (2015)Google Scholar
  72. Wen, F., Li, C.: Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts. Acc. Chem. Res. 46(11), 2355–2364 (2013)Google Scholar
  73. Yang, X., Zhu, G., Wang, S., Wang, Z.L.: A self-powered electrochromic device driven by a nanogenerator. Energy Environ. Sci. 5(11), 9462–9466 (2012)Google Scholar
  74. Ylä-Mella, J., Poikela, K., Lehtinen, U., Tanskanen, P., Román, E., Keiski, R.L., Pongrácz, E.: Overview of the WEEE directive and its implementation in the nordic countries: national realisations and best practices. J. Waste Manag. 2014, 1–18 (2014)Google Scholar
  75. Zhou, Y., Wang, L., McCalley, J.D.: Designing effective and efficient incentive policies for renewable energy in generation expansion planning. Appl. Energy. 88(6), 2201–2209 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Colin Tong
    • 1
  1. 1.ChicagoUSA

Personalised recommendations