Advertisement

Emerging Materials for Energy Harvesting

  • Colin Tong
Chapter

Abstract

Energy harvesting is emerging as a viable method for electronic devices to pull ambient energy from their surrounding environment (e.g., solar power, thermal energy, wind energy, salinity gradients, and kinetic energy, also known as ambient energy) and convert it into electrical energy for stored power. This coveted technology has the potential to serve as an alternative power supply for batteries that are ubiquitous in small, mobile, and autonomous wireless electronic devices, like those used in wearable electronics and wireless sensor networks. The discipline of energy harvesting is a broad topic that includes established methods and materials such as photovoltaics, and thermoelectrics, as well as emerging technologies that convert mechanical energy, magnetic energy, and waste heat to electricity. Innovative materials are vital to the development of all these energy-harvesting technologies. There are several promising micro- and nano-scale energy-harvesting materials (including ceramics, single crystals, polymers, and composites) and technologies currently being developed, such as thermoelectric materials, piezoelectric materials, pyroelectric materials, and magnetic materials. This chapter will review various state-of-the-art materials and enabled devices for direct energy harvesting and conversion, and also highlight the nanostructured materials underlying energy-harvesting principles and devices, in addition to traditional bulk processes and devices as appropriate and synergistic; innovative device-design and fabrication that leads to higher efficiency energy-harvesting or conversion technologies ranging from the cm/mm scale down to MEMS/NEMS (micro- and nano-electromechanical systems) devices; new developments in experimental methods, and device performance measurement techniques.

References

  1. Ahn, C.-W., Maurya, D., Park, C.-S., Nahm, S., Priya, S.: A generalized rule for large piezoelectric response in perovskite oxide ceramics and its application for design of lead-free compositions. J. Appl. Phys. 105, 114108 (2009)CrossRefGoogle Scholar
  2. Andrew, J.S., Starr, J.D., Budi, M.A.K.: Prospects for nanostructured multiferroic composite materials. Scripta Mater. 74, 38–43 (2014)Google Scholar
  3. Andosca, R.A., McDonald, T.G., Genova, V., Rosenberg, S., Keating, J., Benedixen, C., Wu, J.: Experimental and theoretical studies on mems piezoelectric vibrational energy harvesters with mass loading. Sens. Actuat. A: Phys. 178, 76–87 (2012)CrossRefGoogle Scholar
  4. Apo, D.J.: Low frequency microscale energy harvesting. Ph.D. Disseration. Virginia Tech, Blacksburg (2014)Google Scholar
  5. Aswal, D.K., Basu, R., Singh, A.: Key issues in development of thermoelectric power generators: high figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energy Convers. Manag. 114, 50–67 (2016)CrossRefGoogle Scholar
  6. Bae, J., Lee, J., Kim, S., Ha, J., Lee, B.-S., Park, Y., Choong, C., Kim, J.-B., Wang, Z.L., Kim, H.-Y., Park, J.-J., UI, C.: Flutter-driven triboelectrification for harvesting wind energy. Nat. Commun. 5, 4929 (2014)CrossRefGoogle Scholar
  7. Biswas, K., He, J., Zhang, Q., Wang, G., Uher, C., Dravid, V.P., Kanatzidis, M.G.: Strained endotaxial nanostructure with high thermoelectric figure of merit. Nat. Chem. 3(2), 160–166 (2011)CrossRefGoogle Scholar
  8. Bowen, C.R., Taylor, J., LeBoulbar, E., Zabek, D., Chauhanc, A., Vaishc, R.: Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 7, 3836–3856 (2014)CrossRefGoogle Scholar
  9. Bykhovski A., Kaminski V., Shur M., Chen Q., Khan M.: Pyroelectricity in gallium nitride thin films. Appl. Phys. Lett. 69, 3254–3256 (1996)Google Scholar
  10. Casian, A.I., Sanduleac, I.I.: Organic thermoelectric materials: new opportunities. J. Thermoelectr. 3, 11–20 (2013)Google Scholar
  11. Chen, J., Zhu, G., Yang, J., Jing, Q., Bai, P., Yang, W., Qi, X., Su, Y., Wang, Z.L.: Personalized keystroke dynamics for self-powered human–machine interfacing. ACS Nano. 9, 105–116 (2015)CrossRefGoogle Scholar
  12. Dagdeviren, C., Joe, P., Tuzmanc, O.L., Park, K.-I., Lee, K.J., Shi, Y., Huangh, Y., Rogers, J.A.: Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extr. Mechan. Lett. 9, 269–281 (2016)CrossRefGoogle Scholar
  13. Deterre, M., Lefeuvre, E., Zhu, Y., Woytasik, M., Bosseboeuf, A., Boutaud, B., Dal Molin, R.: Micromachined piezoelectric spirals and ultra-compliant packaging for blood pressure energy harvesters powering medical implants. IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 249–252. IEEE, New York (2013)Google Scholar
  14. Dineva, P.S., Cross, D., Mȕller, R., Rangelov, T.: Dynamic fracture of piezoelectric materials-solid mechanics and its applications, pp. 7–32. Springer International Publishing, Switzerland (2014)Google Scholar
  15. Elsheikh, M.H., et al.: A review on thermoelectric renewable energy: principle parameters that affect their performance. Renew. Sust. Energ. Rev. 30, 337–355 (2014)CrossRefGoogle Scholar
  16. Falconi, C., Mantini, G., D’Amico, A., Ferrari, V.: Modeling of piezoelectric nanodevices. In: Piezoelectric nanomaterials for biomedical applications. In: Ciofani, G., Menciassi, A. (eds.) Nanomedicine and nanotoxicology, pp. 93–133. Springer, Berlin, Germany (2012)Google Scholar
  17. Fang, C., Jiao, J., Ma, J., Lin, D., Xu, H., Zhao, X., Luo, H.: Significant reduction of equivalent magnetic noise by in-plane series connection in magnetoelectric Metglas/Mn-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 laminate composites. J. Phys. D: Appl. Phy. 48, 465002 (2015)CrossRefGoogle Scholar
  18. Geuther, J. A., Danon, Y.: Electron and positive ion acceleration with pyroelectric crystals. Journal of Applied Physics 97, 074109 (2005)Google Scholar
  19. Gillette, S.M., Fitchorov, T., Obi, O., Jiang, L., Hao, H., Wu, S., Chen, Y., Harris, V.G.: Effects of intrinsic magnetostriction on tube-topology magnetoelectric sensors with high magnetic field sensitivity. J. Appl. Phys. 115, 17C734 (2014)CrossRefGoogle Scholar
  20. Guduru, R., Liang, P., Runowicz, C., Nair, M., Atluri, V., Khizroev, S.: Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells. Sci. Rep. 3, 2953 (2013)CrossRefGoogle Scholar
  21. Hajati, A., Kim, S.-G.: Ultra-wide bandwidth piezoelectric energy harvesting. Appl. Phys. Lett. 99, 083105 (2011)CrossRefGoogle Scholar
  22. Han, G., Ryu, J., Yoon, W.-H., Choi, J.-J., Hahn, B.D., Kim, J.-W., Park, D.-S., Ahn, C.-W., Priya, S., Jeong, D.-Y.: Stress-controlled Pb(Zr0. 52Ti0. 48)O3 thick films by thermal expansion mismatch between substrate and Pb(Zr0. 52Ti0. 48)O3 film. J. Appl. Phys. 110, 124101 (2011)CrossRefGoogle Scholar
  23. He, J., Liu, Y., Funahashi, R.: Oxide thermoelectrics: the challenges, progress, and outlook. J. Mater. Res. 26(15), 1762–1772 (2011)CrossRefGoogle Scholar
  24. Hossain, M.S., Al-Dirini, F., Hossain, F.M., Skafidas, E.: High performance graphene nano-ribbon thermoelectric devices by incorporation and dimensional tuning of nanopores. Sci. Rep. 5, 11297 (2015)CrossRefGoogle Scholar
  25. Hunter, S.R., Lavrik, N.V., Bannuru, T., Mostafa, S., Rajic, S., Datskos, P.G.: Development of MEMS based pyroelectric thermal energy harvesters. Proc. SPIE. 8035, 80350V (2011)CrossRefGoogle Scholar
  26. Jagadish, C., Pearton, S.J.: Zinc oxide bulk, thin films and nanostructures: processing, properties, and applications. Elsevier, Amsterdam (2011)Google Scholar
  27. Jenkins, K., Nguyen, V., Zhu, R., Yang, R.: Piezotronic effect: an emerging mechanism for sensing applications. Sensors. 15, 22914–22940 (2015)CrossRefGoogle Scholar
  28. Joshi, G., et al.: Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 8, 4670 (2008)CrossRefGoogle Scholar
  29. Kargol, A., Malkinski, L., Caruntu, G.: Biomedical applications of multiferroic nanoparticles. In: Malkinski, L. (ed.) Advanced magnetic materials, pp. 89–118. InTech, Rijeka, Croatia (2012)Google Scholar
  30. Kim, S.-G., Priya, S., Kanno, I.: Piezoelectric MEMS for energy harvesting. MRS Bull. 37(11), 1039–1050 (2012)CrossRefGoogle Scholar
  31. Koumoto, K., et al.: Thermoelectric ceramics for energy harvesting. J. Am. Ceram. Soc. 96, 1–23 (2013)CrossRefGoogle Scholar
  32. Lang, S.B.: Pyroelectricity: from ancient curiosity to modern imaging tool. Phys. Today. 58, 31–36 (2005)CrossRefGoogle Scholar
  33. Lee, M., Yang, R., Li, C., Wang, Z.L.: Nanowire−quantum dot hybridized cell for harvesting sound and solar energies. J. Phys. Chem. Lett. 1, 2929–2935 (2010)CrossRefGoogle Scholar
  34. Lee, J.H., Lee, K.Y., Gupta, M.K., Kim, T.Y., Lee, D.Y., Oh, J., Ryu, C., Yoo, W.J., Kang, C.Y., Yoon, S.J., Yoo, J.B., Kim, S.W.: Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator. Adv. Mater. 26, 765–769 (2014)CrossRefGoogle Scholar
  35. Lee, J., Kim, J., Kim, T., Hossain, M.A., Kim, S., Kim, J.: All-in-one energy harvesting and storage devices. J. Mater. Chem. A. 4(21), 7983–7999 (2016)CrossRefGoogle Scholar
  36. Leonov, V.: Energy harvesting for self-powered wearable devices. In: Bonfiglio, A., De Rossi, D. (eds.) Wearable monitoring systems. Springer, New York (2011)Google Scholar
  37. Lin, Z.-H., Cheng, G., Lin, L., Lee, S., Wang, Z.L.: Angew. Chem. Int. Ed. 125, 12777–12781 (2013)CrossRefGoogle Scholar
  38. Lin, Z., Chen, J., Yang, J.: Recent progress in triboelectric nanogenerators as a renewable and sustainable power source. J. Nanomater. 2016, 5651613 (2016)Google Scholar
  39. Lingam, D., Parikha, A.R., Huanga, J., Jainb, A., Minary-Jolandana, M.: Nano/microscale pyroelectric energy harvesting: challenges and opportunities. Int. J. Smart. Nano Mater. 4(4), 229–245 (2013)CrossRefGoogle Scholar
  40. Morimoto, K., Kanno, I., Wasa, K., Kotera, H.: High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers. Sens. Actuat. A: Phys. 163, 428–432 (2010)CrossRefGoogle Scholar
  41. Music, D., Geyer, R.W., Hans, M.: High-throughput exploration of thermoelectric and mechanical properties of amorphous NbO2 with transition metal additions. J. Appl. Phys. 120, 045104 (2016)CrossRefGoogle Scholar
  42. Narita, F., Fox, M.: A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications. Adv. Eng. Mater. 20(5), 1700743 (1–22) (2018)Google Scholar
  43. Newnham, R.E.: Properties of materials: anisotropy, symmetry, structure. Oxford University Press, Oxford (2005)Google Scholar
  44. Palneedi, H., Annapureddy, V., Priya, S., Ryu, J.: Status and perspectives of multiferroic magnetoelectric composite materials and applications. Actuators 5(1), 9 (2016)Google Scholar
  45. Paluszek, M., Avirovik, D., Zhou, Y., Kundu, S., Chopra, A., Montague, R., Priya, S.: Magnetoelectric composites for medical application. In: Srinivasan, G., Priya, S., Sun, N.X. (eds.) Composite magnetoelectrics, pp. 297–327. Woodhead Publishing, Cambridge, UK (2015)CrossRefGoogle Scholar
  46. Park, K.-I., Son, J.H., Hwang, G.-T., Jeong, C.K., Ryu, J., Koo, M., Choi, I., Lee, S.H., Byun, M., Wang, Z.L., Lee, K.J.: Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26(16), 2514–2520 (2014)CrossRefGoogle Scholar
  47. Park, T., Na, J., Kim, B., Kim, Y., Shin, H., Kim, E.: Photothermally activated pyroelectric polymer films for harvesting of solar heat with a hybrid energy cell structure. ACS Nano. 9(12), 11830–11839 (2015)CrossRefGoogle Scholar
  48. Pillatsch, P.: Piezoelectric energy harvesting from low frequency and random excitation using frequency up-conversion. Ph.D. thesis. Imperial College, London (2013)Google Scholar
  49. Priya, S., Song, H.-C., Zhou, Y., Varghese, R., Chopra, A., Kim, S.-G., Kanno, I., Wu, L., Ha, D.S., Ryu, J., Polcawich, R.G.: A review on piezoelectric energy harvesting: materials, methods, and circuits. Energ Harvest Syst. 4(1), 3–39 (2017)Google Scholar
  50. Qi, Y., Kim, J., Nguyen, T.D., Lisko, B., Purohit, P.K., McAlpine, M.C.: Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11(3), 1331–1336 (2011)CrossRefGoogle Scholar
  51. Radousky, H.B., Liang, H.: Energy harvesting—an integrated view of materials, devices and applications. Nanotechnology. 23(50), 502001 (2012)CrossRefGoogle Scholar
  52. Rowe, D.M.: Thermoelectrics handbook: macro to nano. CRC Press, Boca Raton, FL (2005). ISBN 978-1-4200-3890-3CrossRefGoogle Scholar
  53. Ryu, J., Kang, J.-E., Zhou, Y., Choi, S.-Y., Yoon, W.-H., Park, D.-S., Choi, J.-J., Hahn, B.-D., Ahn, C.-W., Kim, J.-W., et al.: Ubiquitous magneto-mechano-electric generator. Energy Environ. Sci. 8, 2402–2408 (2015)CrossRefGoogle Scholar
  54. Sahraoui, A.H., Longuemart, S., Dadarlat, D., Delenclos, S., Kolinsky, C., Buisine, J.: Analysis of the photopyroelectric signal for investigating thermal parameters of pyroelectric materials. Rev. Sci. Instrum. 74, 618–620 (2003)CrossRefGoogle Scholar
  55. Shah, Y.T.: Thermal energy: sources, recovery, and applications. CRC Press, Boca Raton, FL (2018)CrossRefGoogle Scholar
  56. Shibata, K., Suenaga, K., Watanabe, K., Horikiri, F., Nomoto, A., Mishima, T.: Improvement of piezoelectric properties of (K, Na)NbO3 films deposited by sputtering. Jpn. J. Appl. Phys. 50, 041503 (2011)CrossRefGoogle Scholar
  57. Snyder, J., Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008)CrossRefGoogle Scholar
  58. Sohn, J.I., Hong, W.-K., Choi, S.S., Coles, H.J., Welland, M.E., Cha, S.N., Kim, J.M.: Emerging applications of liquid crystals based on nanotechnology. Materials. 7, 2044–2061 (2014)CrossRefGoogle Scholar
  59. Song, R., Jin, H., Li, X., Fei, L., Zhao, Y., Huang, H., Chan, H.L.W., Wang, Y., Chai, Y.: A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes. J. Mater. Chem. A. 3, 14963–14970 (2015)CrossRefGoogle Scholar
  60. Stephan, M., Robert, J., Henry, G., Eckhard, Q., Reinhard, K., Bernhard, W.: MEMS magnetic field sensor based on magnetoelectric composites. J. Micromech. Microeng. 22, 065024 (2012)CrossRefGoogle Scholar
  61. Szczech, J.R., Higginsa, J.M., Jin, S.: Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem. 21, 4037–4055 (2011)CrossRefGoogle Scholar
  62. Ting-Ta, Y., Hirasawa, T., Wright, P., Pisano, A., Liwei, L.: Corrugated aluminum nitride energy harvesters for high energy conversion 26. Effectiveness. J. Micromech. Microeng. 21, 085037 (2011)CrossRefGoogle Scholar
  63. Varghese, R.P.: MEMS technologies for energy harvesting and sensing. Ph.D. Disseration. Virginia Tech, Blacksburg (2013)Google Scholar
  64. Wang, Z.L.: Toward self-powered nanosystems: from nanogenerators to nanopiezotronics. Adv. Funct. Mater. 18(22), 3553–3567 (2008)CrossRefGoogle Scholar
  65. Wang, Z.L.: Piezotronic and piezophototronic effects. J. Phys. Chem. Lett. 1(9), 1388–1393 (2010)CrossRefGoogle Scholar
  66. Wang, Z.L., Zhu, G., Yang, Y., Wang, S., Pan, C.: Progress in nanogenerators for portable electronics. Mater. Today. 15(12), 532–543 (2012)CrossRefGoogle Scholar
  67. Wang, J.-J., Su, H.-J., Hsu, C.-I., Su, Y.-C.: Composite piezoelectric rubber band for energy harvesting from breathing and limb motion. J. Phys. Conf. Ser. 557, 012022 (2014)CrossRefGoogle Scholar
  68. Wang, Z., Pan, X., He, Y., Hu, Y., Gu, H., Wang, Y.: Piezoelectric nanowires in energy harvesting applications. Adv. Mater. Sci. Eng. 2015, 1–21 (2015a)Google Scholar
  69. Wang, Z.L., Chen, J., Lin, L.: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250–2282 (2015b)CrossRefGoogle Scholar
  70. Whatmore, R.: Pyroelectric devices and materials. Rep. Prog. Phys. 49, 1335 (1986)CrossRefGoogle Scholar
  71. Wooldridge, J., Blackburn, J.F., McCartney, N.L., Stewart, M., Weaver, P., Cain, M.G.: Small scale piezoelectric devices: pyroelectric contributions to the piezoelectric response. J. Appl. Phys. 107, 104118–104118-6 (2010)CrossRefGoogle Scholar
  72. Xu, R.: Energy harvesting for microsystems. Ph.D. dissertation. Technical University of Denmark (DTU), Denmark (2012)Google Scholar
  73. Xu, R., Kim, S.-G.: Low-frequency, low-G MEMS piezoelectric energy harvester. J. Phys. Conf. Ser. 660, 012013 (2015)CrossRefGoogle Scholar
  74. Xu, C., Wang, X., Wang, Z.L.: Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. J. Am. Chem. Soc. 131(16), 5866–5872 (2009)CrossRefGoogle Scholar
  75. Xue, X., Wang, S., Guo, W., Zhang, Y., Wang, Z.L.: Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell. Nano Lett. 12, 5048–5054 (2012)CrossRefGoogle Scholar
  76. Yan, Y., Priya, S.: Multiferroic magnetoelectric composites/hybrids. In: Kim, C.-S., Randow, C., Sano, T. (eds.) Hybrid and hierarchical composite materials, pp. 95–160. Springer International Publishing, Cham, Switzerland (2015)Google Scholar
  77. Yang, Y., Wang, Z.L.: Hybrid energy cells for simultaneously harvesting multi-types of energies. Nano Energy. 14, 245–256 (2015)CrossRefGoogle Scholar
  78. Yang, Y., Guo, W., Pradel, K.C., Zhu, G., Zhou, Y., Zhang, Y., Hu, Y., Lin, L., ZL, W.: Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 12, 2833–2838 (2012a)CrossRefGoogle Scholar
  79. Yang, Y., Jung, J.H., Yun, B.K., Zhang, F., Pradel, K.C., Guo, W., Wang, Z.L.: Flexible pyroelectric nanogenerators using a composite structure of lead-free KNbO3 nanowires. Adv. Mater. 24, 5357–5362 (2012b)CrossRefGoogle Scholar
  80. Yang, Y., Zhang, H., Lin, Z.-H., Liu, Y., Chen, J., Lin, Z., Zhou, Y.S., Wong, C.P., Wang, Z.L.: A hybrid energy cell for self-powered water splitting. Energy Environ. Sci. 6, 2429–2434 (2013)CrossRefGoogle Scholar
  81. Yoon, G.C., Shin, K.-S., Gupta, M.K., Lee, K.Y., Lee, J.-H., Wang, Z.L., Kim, S.-W.: High-performance hybrid cell based on an organic photovoltaic device and a direct current piezoelectric nanogenerator. Nano Energy. 12, 547–555 (2015)CrossRefGoogle Scholar
  82. Yu H., Kang B., Park C., Pi U., Lee C., Choi S.-Y.: The fabrication technique and electrical properties of a free-standing GaN nanowire. Appl. Phys. A 81, 245–247 (2005)Google Scholar
  83. Yue, K., Guduru, R., Hong, J., Liang, P., Nair, M., Khizroev, S.: Magneto-electric nano-particles for non-invasive brain stimulation. PLoS One. 7, e44040 (2012)CrossRefGoogle Scholar
  84. Zhang, X., Zhao, L.D.: Thermoelectric materials: energy conversion between heat and electricity. J. Mater. 1, 92–105 (2015)Google Scholar
  85. Zhang, Y., Mehta, R.J., Belley, M., Han, L., Ramanath, G., Borca-Tasciuc, T.: Lattice thermal conductivity diminution and high thermoelectric power factor retention in nanoporous macroassemblies of sulfur-doped bismuth telluride nanocrystals. Appl. Phys. Lett. 100, 1193113 (2012)Google Scholar
  86. Zhou Y., Apo D. J., Priya S.: Dual-phase self-biased magnetoelectric energy harvester. Appl. Phys. Lett. 103, 192909 (2013)Google Scholar
  87. Zhou, Q., Lau, S., Wu, D., Shung, K.K.: Piezoelectric films for high frequency ultrasonic transducers in biomedical applications. Prog. Mater. Sci. 56, 139–174 (2011)CrossRefGoogle Scholar
  88. Zhou, Y.S., Zhu, G., Niu, S., Liu, Y., Bai, P., Jing, Q., Wang, Z.L.: Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification. Adv. Mater. 26(11), 1719–1724 (2014)Google Scholar
  89. Zhu, T., Ertekin, E.: Phonon transport on two-dimensional graphene/boron nitride superlattices. Phys. Rev. B. 90, 195209 (2014)CrossRefGoogle Scholar
  90. Zhu, G., Chen, J., Zhang, T., Jing, Q., Wang, Z.L.: Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5, 3426 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Colin Tong
    • 1
  1. 1.ChicagoUSA

Personalised recommendations