Advertisement

Physarum Inspired Connectivity and Restoration for Wireless Sensor and Actor Networks

  • Abubakr Awad
  • Wei Pang
  • George M. Coghill
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 840)

Abstract

Wireless sensor-actor networks (WSANs) are a core component of Internet of Things (IOT), and are useful for environments that are difficult and/or dangerous for sensors to be deployed deterministically. After random deployment, the sensors are required to disperse autonomously without central control to maximize the coverage and re-establish the connectivity of the network. In this paper, we propose a Physarum inspired self-healing autonomous network connectivity restoration algorithm that minimize movement overhead and keep load balance. The mechanism to select the alternative nodes only involves the one-hop information table, and depends on actor node location from base station (regions of k-influence), and residual energy. Our model achieved almost complete coverage, and fault repair in one or two rounds with minimal number of movement overhead.

Keywords

Physarum polycephalum Hexagonal cellular automaton Wireless sensor-actor networks Connectivity Fault repair 

Notes

Acknowledgement

Abubakr Awad is supported by Elphinstone PhD Scholarship (University of Aberdeen). Wei Pang and George M. Coghill are supported by the Royal Society International Exchange program (Grant Ref IE160806).

References

  1. 1.
    Abbasi, A.A., Younis, M., Akkaya, K.: Movement-assisted connectivity restoration in wireless sensor and actor networks. IEEE Trans. Parallel Distrib. Syst. 20(9), 1366–1379 (2009).  https://doi.org/10.1109/TPDS.2008.246CrossRefGoogle Scholar
  2. 2.
    Abbasi, A.A., Younis, M.F., Baroudi, U.A.: A least-movement topology repair algorithm for partitioned wireless sensor-actor networks. Int. J. Sens. Netw. 11(4), 250–262 (2012).  https://doi.org/10.1504/IJSNET.2012.047152CrossRefGoogle Scholar
  3. 3.
    Abbasi, A.A., Younis, M.F., Baroudi, U.A.: Recovering from a node failure in wireless sensor-actor networks with minimal topology changes. IEEE Trans. Veh. Technol. 62(1), 256–271 (2013).  https://doi.org/10.1109/TVT.2012.2212734CrossRefGoogle Scholar
  4. 4.
    Adamatzky, A.: From reaction-diffusion to physarum computing. Nat. Comput. 8(3), 431–447 (2009).  https://doi.org/10.1007/s11047-009-9120-5MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Adamatzky, A.: Physarum Machines: Computers from Slime Mould. World Scientific (2010). https://books.google.co.uk/books?id=Kbs_AIDbfU8C
  6. 6.
    Afsana, F., Asif-Ur-Rahman, M., Ahmed, M.R., Mahmud, M., Kaiser, M.S.: An energy conserving routing scheme for wireless body sensor nanonetwork communication. IEEE Access 6, 9186–9200 (2018).  https://doi.org/10.1109/ACCESS.2018.2789437CrossRefGoogle Scholar
  7. 7.
    Akkaya, K., Senel, F., Thimmapuram, A., Uludag, S.: Distributed recovery from network partitioning in movable sensor/actor networks via controlled mobility. IEEE Trans. Comput. 59(2), 258–271 (2010).  https://doi.org/10.1109/TC.2009.120MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Alfadhly, A., Baroudi, U., Younis, M.: Least distance movement recovery approach for large scale wireless sensor and actor networks. In: IWCMC 2011 - 7th International Wireless Communications and Mobile Computing Conference, pp. 2058–2063 (2011).  https://doi.org/10.1109/IWCMC.2011.5982851
  9. 9.
    Brass, P.: Bounds on coverage and target detection capabilities for models of networks of mobile sensors. ACM Trans. Sens. Netw. 3(2) (2007).  https://doi.org/10.1145/1240226.1240229
  10. 10.
    Goubier, O.N.P., Huynh, H.X., Truong, T.P., Traore, M., Pottier, B., Rodin, V., Nsom, B., Esclade, L., Rakoroarijaona, R.N., Goubier, O., Stinckwich, S., Huynh, H.X., Lam, B.H., Vinh, Udrekh, Muslim, H., Surono: Wireless sensor network-based monitoring, cellular modelling and simulations for the environment. ASM Sci. J. 2017(Special issue1), 56–63 (2017)Google Scholar
  11. 11.
    Gunji, Y.P., Shirakawa, T., Niizato, T., Haruna, T.: Minimal model of a cell connecting amoebic motion and adaptive transport networks. J. Theor. Biol. 253(4), 659–667 (2008).  https://doi.org/10.1016/j.jtbi.2008.04.017CrossRefGoogle Scholar
  12. 12.
    Gupta, S.K., Kuila, P., Jana, P.K.: Genetic algorithm for k-connected relay node placement in wireless sensor networks. Adv. Intell. Syst. Comput. 379 (2016).  https://doi.org/10.1007/978-81-322-2517-1_69
  13. 13.
    Hashim, H.A., Ayinde, B.O., Abido, M.A.: Optimal placement of relay nodes in wireless sensor network using artificial bee colony algorithm. J. Netw. Comput. Appl. 64, 239–248 (2016).  https://doi.org/10.1016/j.jnca.2015.09.013CrossRefGoogle Scholar
  14. 14.
    Imran, M., Younis, M., Haider, N., Alnuem, M.A.: Resource efficient connectivity restoration algorithm for mobile sensor/actor networks. EURASIP J. Wirel. Commun. Netw. 2012(1), 347 (2012)CrossRefGoogle Scholar
  15. 15.
    Jones, J.: Influences on the formation and evolution of physarum polycephalum inspired emergent transport networks. Nat. Comput. 10(4), 1345–1369 (2011).  https://doi.org/10.1007/s11047-010-9223-zMathSciNetCrossRefGoogle Scholar
  16. 16.
    Lam, B.H., Huynh, H.X., Pottier, B.: Synchronous networks for bio-environmental surveillance based on cellular automata. EAI Endorsed Trans. Context-Aware Syst. Appl. 16(8) (2016).  https://doi.org/10.4108/eai.9-3-2016.151117
  17. 17.
    Latty, T., Beekman, M.: Speed-accuracy trade-offs during foraging decisions in the acellular slime mould physarum polycephalum. Proc. R. Soc. B Biol. Sci. 278(1705), 539–545 (2011).  https://doi.org/10.1098/rspb.2010.1624CrossRefGoogle Scholar
  18. 18.
    Nakagaki, T., Yamada, H., Tóth, Á.: Maze-solving by an amoeboid organism. Nature 407(6803), 470 (2000).  https://doi.org/10.1038/35035159CrossRefGoogle Scholar
  19. 19.
    Ozera, K., Oda, T., Elmazi, D., Barolli, L.: Design and implementation of a simulation system based on genetic algorithm for node placement in wireless sensor and actor networks. In: International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 673–682. Springer, Heidelberg (2016)Google Scholar
  20. 20.
    Qiu, T., Chen, N., Li, K., Qiao, D., Fu, Z.: Heterogeneous ad hoc networks: architectures, advances and challenges. Ad Hoc Netw. 55, 143–152 (2017).  https://doi.org/10.1016/j.adhoc.2016.11.001CrossRefGoogle Scholar
  21. 21.
    Qiu, T., Luo, D., Xia, F., Deonauth, N., Si, W., Tolba, A.: A greedy model with small world for improving the robustness of heterogeneous internet of things. Comput. Netw. 101, 127–143 (2016).  https://doi.org/10.1016/j.comnet.2015.12.019CrossRefGoogle Scholar
  22. 22.
    Ramezani, T., Ramezani, T.: A distributed method to reconstruct connection in wireless sensor networks by using genetic algorithm. Mod. Appl. Sci. 10(6), 50 (2016)CrossRefGoogle Scholar
  23. 23.
    Reid, C.R., Beekman, M.: Solving the towers of Hanoi - how an amoeboid organism efficiently constructs transport networks. J. Exp. Biol. 216(9), 1546–1551 (2013).  https://doi.org/10.1242/jeb.081158CrossRefGoogle Scholar
  24. 24.
    Reid, C.R., Latty, T.: Collective behaviour and swarm intelligence in slime moulds. FEMS Microbiol. Rev. 40(6), 798–806 (2016).  https://doi.org/10.1093/femsre/fuw033CrossRefGoogle Scholar
  25. 25.
    Saigusa, T., Tero, A., Nakagaki, T., Kuramoto, Y.: Amoebae anticipate periodic events. Phys. Rev. Lett. 100(1) (2008).  https://doi.org/10.1103/PhysRevLett.100.018101
  26. 26.
    Senturk, I., Yilmaz, S., Akkaya, K.: Connectivity restoration in delay-tolerant sensor networks using game theory. Int. J. Ad Hoc Ubiquitous Comput. 11(2–3), 109–124 (2012).  https://doi.org/10.1504/IJAHUC.2012.050268CrossRefGoogle Scholar
  27. 27.
    Tsompanas, M.A.I., Sirakoulis, G.C., Adamatzky, A.: Cellular automata models simulating slime mould computing. In: Advances in Physarum Machines, pp. 563–594. Springer, Heidelberg (2016)Google Scholar
  28. 28.
    Vaidya, K., Younis, M.: Efficient failure recovery in wireless sensor networks through active spare designation. In: DCOSS 2010 - International Conference on Distributed Computing in Sensor Systems, Adjunct Workshop Proceedings: IWSN, MobiSensors, Poster and Demo Sessions (2010).  https://doi.org/10.1109/DCOSSW.2010.5593284
  29. 29.
    Wolfram, S.: Computation theory of cellular automata. Commun. Math. Phys. 96(1), 15–57 (1984)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Yan, K., Luo, G., Tian, L., Jia, Q., Peng, C.: Hybrid connectivity restoration in wireless sensor and actor networks. EURASIP J. Wirel. Commun. Netw. 2017(1) (2017).  https://doi.org/10.1186/s13638-017-0921-4
  31. 31.
    Younis, M., Lee, S., Gupta, S., Fisher, K.: A localized self-healing algorithm for networks of moveable sensor nodes. In: GLOBECOM - IEEE Global Telecommunications Conference, pp. 1–5 (2008).  https://doi.org/10.1109/GLOCOM.2008.ECP.9
  32. 32.
    Zhang, X., Gao, C., Deng, Y., Zhang, Z.: Slime mould inspired applications on graph-optimization problems. In: Advances in Physarum Machines, pp. 519–562. Springer, Heidelberg (2016)Google Scholar
  33. 33.
    Zhang, Y., Wang, J., Hao, G.: An autonomous connectivity restoration algorithm based on finite state machine for wireless sensor-actor networks. Sensors 18(1), 153 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computing ScienceUniversity of AberdeenAberdeenUK

Personalised recommendations