Physarum Inspired Connectivity and Restoration for Wireless Sensor and Actor Networks

  • Abubakr Awad
  • Wei Pang
  • George M. Coghill
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 840)


Wireless sensor-actor networks (WSANs) are a core component of Internet of Things (IOT), and are useful for environments that are difficult and/or dangerous for sensors to be deployed deterministically. After random deployment, the sensors are required to disperse autonomously without central control to maximize the coverage and re-establish the connectivity of the network. In this paper, we propose a Physarum inspired self-healing autonomous network connectivity restoration algorithm that minimize movement overhead and keep load balance. The mechanism to select the alternative nodes only involves the one-hop information table, and depends on actor node location from base station (regions of k-influence), and residual energy. Our model achieved almost complete coverage, and fault repair in one or two rounds with minimal number of movement overhead.


Physarum polycephalum Hexagonal cellular automaton Wireless sensor-actor networks Connectivity Fault repair 



Abubakr Awad is supported by Elphinstone PhD Scholarship (University of Aberdeen). Wei Pang and George M. Coghill are supported by the Royal Society International Exchange program (Grant Ref IE160806).


  1. 1.
    Abbasi, A.A., Younis, M., Akkaya, K.: Movement-assisted connectivity restoration in wireless sensor and actor networks. IEEE Trans. Parallel Distrib. Syst. 20(9), 1366–1379 (2009). Scholar
  2. 2.
    Abbasi, A.A., Younis, M.F., Baroudi, U.A.: A least-movement topology repair algorithm for partitioned wireless sensor-actor networks. Int. J. Sens. Netw. 11(4), 250–262 (2012). Scholar
  3. 3.
    Abbasi, A.A., Younis, M.F., Baroudi, U.A.: Recovering from a node failure in wireless sensor-actor networks with minimal topology changes. IEEE Trans. Veh. Technol. 62(1), 256–271 (2013). Scholar
  4. 4.
    Adamatzky, A.: From reaction-diffusion to physarum computing. Nat. Comput. 8(3), 431–447 (2009). Scholar
  5. 5.
    Adamatzky, A.: Physarum Machines: Computers from Slime Mould. World Scientific (2010).
  6. 6.
    Afsana, F., Asif-Ur-Rahman, M., Ahmed, M.R., Mahmud, M., Kaiser, M.S.: An energy conserving routing scheme for wireless body sensor nanonetwork communication. IEEE Access 6, 9186–9200 (2018). Scholar
  7. 7.
    Akkaya, K., Senel, F., Thimmapuram, A., Uludag, S.: Distributed recovery from network partitioning in movable sensor/actor networks via controlled mobility. IEEE Trans. Comput. 59(2), 258–271 (2010). Scholar
  8. 8.
    Alfadhly, A., Baroudi, U., Younis, M.: Least distance movement recovery approach for large scale wireless sensor and actor networks. In: IWCMC 2011 - 7th International Wireless Communications and Mobile Computing Conference, pp. 2058–2063 (2011).
  9. 9.
    Brass, P.: Bounds on coverage and target detection capabilities for models of networks of mobile sensors. ACM Trans. Sens. Netw. 3(2) (2007).
  10. 10.
    Goubier, O.N.P., Huynh, H.X., Truong, T.P., Traore, M., Pottier, B., Rodin, V., Nsom, B., Esclade, L., Rakoroarijaona, R.N., Goubier, O., Stinckwich, S., Huynh, H.X., Lam, B.H., Vinh, Udrekh, Muslim, H., Surono: Wireless sensor network-based monitoring, cellular modelling and simulations for the environment. ASM Sci. J. 2017(Special issue1), 56–63 (2017)Google Scholar
  11. 11.
    Gunji, Y.P., Shirakawa, T., Niizato, T., Haruna, T.: Minimal model of a cell connecting amoebic motion and adaptive transport networks. J. Theor. Biol. 253(4), 659–667 (2008). Scholar
  12. 12.
    Gupta, S.K., Kuila, P., Jana, P.K.: Genetic algorithm for k-connected relay node placement in wireless sensor networks. Adv. Intell. Syst. Comput. 379 (2016).
  13. 13.
    Hashim, H.A., Ayinde, B.O., Abido, M.A.: Optimal placement of relay nodes in wireless sensor network using artificial bee colony algorithm. J. Netw. Comput. Appl. 64, 239–248 (2016). Scholar
  14. 14.
    Imran, M., Younis, M., Haider, N., Alnuem, M.A.: Resource efficient connectivity restoration algorithm for mobile sensor/actor networks. EURASIP J. Wirel. Commun. Netw. 2012(1), 347 (2012)CrossRefGoogle Scholar
  15. 15.
    Jones, J.: Influences on the formation and evolution of physarum polycephalum inspired emergent transport networks. Nat. Comput. 10(4), 1345–1369 (2011). Scholar
  16. 16.
    Lam, B.H., Huynh, H.X., Pottier, B.: Synchronous networks for bio-environmental surveillance based on cellular automata. EAI Endorsed Trans. Context-Aware Syst. Appl. 16(8) (2016).
  17. 17.
    Latty, T., Beekman, M.: Speed-accuracy trade-offs during foraging decisions in the acellular slime mould physarum polycephalum. Proc. R. Soc. B Biol. Sci. 278(1705), 539–545 (2011). Scholar
  18. 18.
    Nakagaki, T., Yamada, H., Tóth, Á.: Maze-solving by an amoeboid organism. Nature 407(6803), 470 (2000). Scholar
  19. 19.
    Ozera, K., Oda, T., Elmazi, D., Barolli, L.: Design and implementation of a simulation system based on genetic algorithm for node placement in wireless sensor and actor networks. In: International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 673–682. Springer, Heidelberg (2016)Google Scholar
  20. 20.
    Qiu, T., Chen, N., Li, K., Qiao, D., Fu, Z.: Heterogeneous ad hoc networks: architectures, advances and challenges. Ad Hoc Netw. 55, 143–152 (2017). Scholar
  21. 21.
    Qiu, T., Luo, D., Xia, F., Deonauth, N., Si, W., Tolba, A.: A greedy model with small world for improving the robustness of heterogeneous internet of things. Comput. Netw. 101, 127–143 (2016). Scholar
  22. 22.
    Ramezani, T., Ramezani, T.: A distributed method to reconstruct connection in wireless sensor networks by using genetic algorithm. Mod. Appl. Sci. 10(6), 50 (2016)CrossRefGoogle Scholar
  23. 23.
    Reid, C.R., Beekman, M.: Solving the towers of Hanoi - how an amoeboid organism efficiently constructs transport networks. J. Exp. Biol. 216(9), 1546–1551 (2013). Scholar
  24. 24.
    Reid, C.R., Latty, T.: Collective behaviour and swarm intelligence in slime moulds. FEMS Microbiol. Rev. 40(6), 798–806 (2016). Scholar
  25. 25.
    Saigusa, T., Tero, A., Nakagaki, T., Kuramoto, Y.: Amoebae anticipate periodic events. Phys. Rev. Lett. 100(1) (2008).
  26. 26.
    Senturk, I., Yilmaz, S., Akkaya, K.: Connectivity restoration in delay-tolerant sensor networks using game theory. Int. J. Ad Hoc Ubiquitous Comput. 11(2–3), 109–124 (2012). Scholar
  27. 27.
    Tsompanas, M.A.I., Sirakoulis, G.C., Adamatzky, A.: Cellular automata models simulating slime mould computing. In: Advances in Physarum Machines, pp. 563–594. Springer, Heidelberg (2016)Google Scholar
  28. 28.
    Vaidya, K., Younis, M.: Efficient failure recovery in wireless sensor networks through active spare designation. In: DCOSS 2010 - International Conference on Distributed Computing in Sensor Systems, Adjunct Workshop Proceedings: IWSN, MobiSensors, Poster and Demo Sessions (2010).
  29. 29.
    Wolfram, S.: Computation theory of cellular automata. Commun. Math. Phys. 96(1), 15–57 (1984)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Yan, K., Luo, G., Tian, L., Jia, Q., Peng, C.: Hybrid connectivity restoration in wireless sensor and actor networks. EURASIP J. Wirel. Commun. Netw. 2017(1) (2017).
  31. 31.
    Younis, M., Lee, S., Gupta, S., Fisher, K.: A localized self-healing algorithm for networks of moveable sensor nodes. In: GLOBECOM - IEEE Global Telecommunications Conference, pp. 1–5 (2008).
  32. 32.
    Zhang, X., Gao, C., Deng, Y., Zhang, Z.: Slime mould inspired applications on graph-optimization problems. In: Advances in Physarum Machines, pp. 519–562. Springer, Heidelberg (2016)Google Scholar
  33. 33.
    Zhang, Y., Wang, J., Hao, G.: An autonomous connectivity restoration algorithm based on finite state machine for wireless sensor-actor networks. Sensors 18(1), 153 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computing ScienceUniversity of AberdeenAberdeenUK

Personalised recommendations