Advertisement

Behavioral Interventions from Trait Insights

  • Ulla Gain
  • Mikko Koponen
  • Virpi Hotti
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 907)

Abstract

Individuals have the stated and unstated beliefs and intentions. The theory of planned behavior is expressed by the mathematical function where beliefs have empirically derived coefficients. However, personality traits can help account for differences in beliefs. In this paper, we will find out how we can amplify behavioral interventions from text-based trait insights. Therefore, we research techniques (e.g., sentence and word embedding) behind text-based traits. Furthermore, we exemplify text-based traits by 52 personality characteristics (35 dimensions and facets of Big Five, 12 needs and five values) and 42 consumption preferences via API of the IBM Watson™ Personality Insights service. Finally, we discuss the possibilities of behavioral interventions based on the personality characteristics and consumption preferences (i.e., text-based differences and similarities between the individuals).

Keywords

Behavior Belief Intention Insight Personality trait 

References

  1. 1.
    The International Organization for Standardization: ISO 5127:2017(en) Information and documentation — Foundation and vocabulary (2017). https://www.iso.org/obp/ui#iso:std:iso:5127:ed-2:v1:en
  2. 2.
    The European Union: The European Parliament or the Council Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) (2016). https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
  3. 3.
    The International Organization for Standardization, the International Electrotechnical Commission: ISO/IEC 29100:2011(en) Information technology — Security techniques — Privacy framework (2011). http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
  4. 4.
    Bruce, P.: The Real Facebook Controversy. Data Science Central (2018). https://www.datasciencecentral.com/profiles/blogs/the-real-facebook-controversy
  5. 5.
    Ajzen, I.: Attitudes, Personality and Behavior. Open University Press, Maidenhead (2005)Google Scholar
  6. 6.
  7. 7.
    Gain, U., Hotti, V.: Tones and traits - experiments of text-based extractions with cognitive services. Finnish J. eHealth eWelfare 9(2–3), 82–94 (2017).  https://doi.org/10.23996/fjhw.61001
  8. 8.
  9. 9.
    Davis, T.: Sparse matrix algorithms and software (2018). http://faculty.cse.tamu.edu/davis/research.html
  10. 10.
    Ingersoll, K.: An Intro to Natural Language Processing in Python: Framing Text Classification in Familiar Terms (2018). https://www.datasciencecentral.com/profiles/blogs/an-intro-to-natural-language-processing-in-python-framing-text
  11. 11.
    Wikipedia: List of text corpora (2018). https://en.wikipedia.org/wiki/List_of_text_corpora
  12. 12.
    Turku NLP Group: Models (2018). http://bionlp-www.utu.fi/wv_demo/
  13. 13.
    Zeng, W., Luo, W., Fidler, S., Urtasun, R.: Efficient Summarization with Read-Again and Copy Mechanism (2017). https://arxiv.org/abs/1611.03382
  14. 14.
    Google: Neural Machine Translation (seq2seq) Tutorial (2018). https://www.tensorflow.org/tutorials/seq2seq
  15. 15.
    Pagliardini, M., Gupta, P., Jaggi, M.: Unsupervised Learning of Sentence Embeddings using Compositional n-Gram Features (2017). https://arxiv.org/pdf/1703.02507.pdf
  16. 16.
    Pennington, J., Socher, R., Manning C.D.: GloVe: Global Vectors for Word Representation (2014). https://www.aclweb.org/anthology/D14-1162
  17. 17.
  18. 18.
  19. 19.
    Pennington, J., Socher, R., Manning, C.D.: GloVe: Global Vectors for Word Representation (2014). https://nlp.stanford.edu/projects/glove/
  20. 20.
    Futusome: Services (2017). https://www.futusome.com/en/services/
  21. 21.
    GitHub: watson-developer-cloud/python-sdk (2018). https://github.com/watson-developer-cloud/python-sdk/tree/develop/examples
  22. 22.
    IBM: Personality Insights – API reference (2017). https://www.ibm.com/watson/developercloud/personality-insights/api/v3/?python
  23. 23.
  24. 24.
  25. 25.
  26. 26.
  27. 27.
  28. 28.
    The Comprehensive R Archive Network: Hmisc: Harrell Miscellaneous (2018). https://CRAN.R-project.org/package=Hmisc
  29. 29.
    Johnson, J.: Measuring thirty facets of the five factor model with a 120-item public domain inventory: development of the IPIP-NEO-120. J. Res. Pers. 51, 78–89 (2014).  https://doi.org/10.1016/j.jrp.2014.05.003CrossRefGoogle Scholar
  30. 30.
    BiAffect: BiAffect (2017). http://www.biaffect.com/
  31. 31.
    Keras: The Python Deep Learning library (2018). https://keras.io/
  32. 32.
    TensorFlow: An open source machine learning framework for everyone (2019). https://www.tensorflow.org/
  33. 33.
    Wikipedia. Tensor (2018). https://en.wikipedia.org/wiki/Tensor
  34. 34.
    GitHub: EpistasisLab/tpot (2018). https://github.com/EpistasisLab/tpot

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of ComputingUniversity of Eastern FinlandKuopioFinland

Personalised recommendations