Advertisement

Genetics of Hydrocephalus: Causal and Contributory Factors

  • Hannah Tully
  • Annie Laquerriere
  • Dan Doherty
  • William Dobyns
Chapter

Abstract

Hydrocephalus, as a multifactorial condition, can be caused or influenced by genetic factors at many levels. The best known genetic causes are mutations in genes such as L1CAM that cause hydrocephalus primarily through CSF obstruction. In these conditions, hydrocephalus is often severe, prenatal in onset, and may be the predominant clinical feature. Hydrocephalus may also be a feature of many genetic syndromes, such as the congenital muscular dystrophies, the RASopathies, and craniosynostosis syndromes. These conditions are usually identified on the basis of clinical features other than hydrocephalus, although those features may be overshadowed when ventricular dilatation is severe. Finally, acquired or multifactorial forms of hydrocephalus could conceivably be influenced by susceptibility genes. In this chapter, we focus first on genetic causes of severe, early-onset forms of hydrocephalus. We next address syndromes in which hydrocephalus may be an accompanying – but not the primary – clinical feature. Finally, we touch upon the notion of genetic variants that are not pathogenic in themselves, but could increase the likelihood of developing hydrocephalus in the presence of other risk factors.

Keywords

Hydrocephalus Aqueductal stenosis Aqueductal atresia Aqueductal forking Brain malformations Heterotopia Susceptibility factors 

References

  1. 1.
    Tully HM, Ishak GE, Rue TC, et al. Two hundred thirty-six children with developmental hydrocephalus: causes and clinical consequences. J Child Neurol. 2016;31:309–20.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Lategan B, Chodirker BN, Del Bigio MR. Fetal hydrocephalus caused by cryptic intraventricular hemorrhage. Brain Pathol. 2010;20:391–8.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Rosenthal A, Jouet M, Kenwrick S. Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nat Genet. 1992;2:107–12.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Schrander-Stumpel C, Vos YJ. L1 syndrome. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K, editors. GeneReviews. Seattle, WA: University of Washington; 1993.Google Scholar
  5. 5.
    Adzick NS, Thom EA, Spong CY, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364:993–1004.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Maness PF, Schachner M. Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci. 2007;10:19–26.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Adle-Biassette H, Saugier-Veber P, Fallet-Bianco C, et al. Neuropathological review of 138 cases genetically tested for X-linked hydrocephalus: evidence for closely related clinical entities of unknown molecular bases. Acta Neuropathol. 2013;126:427–42.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Ekici AB, Hilfinger D, Jatzwauk M, et al. Disturbed Wnt signalling due to a mutation in CCDC88C causes an autosomal recessive non-syndromic hydrocephalus with medial diverticulum. Mol Syndromol. 2010;1:99–112.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Drielsma A, Jalas C, Simonis N, et al. Two novel CCDC88C mutations confirm the role of DAPLE in autosomal recessive congenital hydrocephalus. J Med Genet. 2012;49:708–12.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ruggeri G, Timms AE, Cheng C, et al. Bi-allelic mutations of CCDC88C are a rare cause of severe congenital hydrocephalus. Am J Med Genet A. 2018;176:676–81.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ishida-Takagishi M, Enomoto A, Asai N, et al. The Dishevelled-associating protein Daple controls the non-canonical Wnt/Rac pathway and cell motility. Nat Commun. 2012;3:859.PubMedCrossRefGoogle Scholar
  12. 12.
    Tsoi H, Yu AC, Chen ZS, et al. A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia. J Med Genet. 2014;51:590–5.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Al-Dosari MS, Al-Owain M, Tulbah M, et al. Mutation in MPDZ causes severe congenital hydrocephalus. J Med Genet. 2013;50:54–8.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Saugier-Veber P, Marguet F, Lecoquierre F, et al. Hydrocephalus due to multiple ependymal malformations is caused by mutations in the MPDZ gene. Acta Neuropathol Commun. 2017;5:36.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Feldner A, Adam MG, Tetzlaff F, et al. Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Mol Med. 2017;9:890–905.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Shaheen R, Sebai MA, Patel N, et al. The genetic landscape of familial congenital hydrocephalus. Ann Neurol. 2017;81:890–7.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Al-Jezawi NK, Al-Shamsi AM, Suleiman J, et al. Compound heterozygous variants in the multiple PDZ domain protein (MPDZ) cause a case of mild non-progressive communicating hydrocephalus. BMC Med Genet. 2018;19:34.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Dobyns WB, Pagon RA, Armstrong D, et al. Diagnostic criteria for Walker-Warburg syndrome. Am J Med Genet. 1989;32:195–210.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Miller G, Ladda RL, Towfighi J. Cerebro-ocular dysplasia--muscular dystrophy (Walker Warburg) syndrome. Findings in 20-week-old fetus. Acta Neuropathol. 1991;82:234–8.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Longman C, Mercuri E, Cowan F, et al. Antenatal and postnatal brain magnetic resonance imaging in muscle-eye-brain disease. Arch Neurol. 2004;61:1301–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Fried K. X-linked mental retardation and-or hydrocephalus. Clin Genet. 1972;3:258–63.PubMedCrossRefGoogle Scholar
  22. 22.
    Strain L, Wright AF, Bonthron DT. Fried syndrome is a distinct X linked mental retardation syndrome mapping to Xp22. J Med Genet. 1997;34:535–40.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Saillour Y, Zanni G, Des Portes V, et al. Mutations in the AP1S2 gene encoding the sigma 2 subunit of the adaptor protein 1 complex are associated with syndromic X-linked mental retardation with hydrocephalus and calcifications in basal ganglia. J Med Genet. 2007;44:739–44.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Cacciagli P, Desvignes JP, Girard N, et al. AP1S2 is mutated in X-linked Dandy-Walker malformation with intellectual disability, basal ganglia disease and seizures (Pettigrew syndrome). Eur J Hum Genet. 2014;22:363–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Gulsuner S, Tekinay AB, Doerschner K, et al. Homozygosity mapping and targeted genomic sequencing reveal the gene responsible for cerebellar hypoplasia and quadrupedal locomotion in a consanguineous kindred. Genome Res. 2011;21:1995–2003.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Cavallin M, Rujano MA, Bednarek N, et al. WDR81 mutations cause extreme microcephaly and impair mitotic progression in human fibroblasts and Drosophila neural stem cells. Brain. 2017;140:2597–609.PubMedCrossRefGoogle Scholar
  27. 27.
    Kielar M, Tuy FP, Bizzotto S, et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci. 2014;17:923–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Massimi L, Paternoster G, Fasano T, Di Rocco C. On the changing epidemiology of hydrocephalus. Childs Nerv Syst. 2009;25:795–800.PubMedCrossRefGoogle Scholar
  29. 29.
    Moritake K, Nagai H, Miyazaki T, Nagasako N, Yamasaki M, Tamakoshi A. Nationwide survey of the etiology and associated conditions of prenatally and postnatally diagnosed congenital hydrocephalus in Japan. Neurol Med Chir (Tokyo). 2007;47:448–52; discussion 52.CrossRefGoogle Scholar
  30. 30.
    Westermaier T, Schweitzer T, Ernestus RI. Arachnoid cysts. Adv Exp Med Biol. 2012;724:37–50.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Doherty D, Chudley AE, Coghlan G, et al. GPSM2 mutations cause the brain malformations and hearing loss in Chudley-McCullough syndrome. Am J Hum Genet. 2012;90:1088–93.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Morin X, Jaouen F, Durbec P. Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nat Neurosci. 2007;10:1440–8.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Bisschoff IJ, Zeschnigk C, Horn D, et al. Novel mutations including deletions of the entire OFD1 gene in 30 families with type 1 orofaciodigital syndrome: a study of the extensive clinical variability. Hum Mutat. 2013;34:237–47.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Putoux A, Thomas S, Coene KL, et al. KIF7 mutations cause fetal hydrolethalus and acrocallosal syndromes. Nat Genet. 2011;43:601–6.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Biesecker LG. Pallister-Hall syndrome. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K, eds. GeneReviews. University of Washington, Seattle); 1993.Google Scholar
  36. 36.
    Biesecker LG. Greig cephalopolysyndactyly syndrome. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K, editors. GeneReviews. Seattle: University of Washington; 1993.Google Scholar
  37. 37.
    Waters AM, Beales PL. Ciliopathies: an expanding disease spectrum. Pediatr Nephrol. 2011;26:1039–56.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Bristol RE, Lekovic GP, Rekate HL. The effects of craniosynostosis on the brain with respect to intracranial pressure. Semin Pediatr Neurol. 2004;11:262–7.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Rich PM, Cox TC, Hayward RD. The jugular foramen in complex and syndromic craniosynostosis and its relationship to raised intracranial pressure. AJNR Am J Neuroradiol. 2003;24:45–51.PubMedGoogle Scholar
  40. 40.
    Hevner RF. The cerebral cortex malformation in thanatophoric dysplasia: neuropathology and pathogenesis. Acta Neuropathol. 2005;110:208–21.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Thomson RE, Kind PC, Graham NA, et al. Fgf receptor 3 activation promotes selective growth and expansion of occipitotemporal cortex. Neural Dev. 2009;4:4.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Khonsari RH, Delezoide AL, Kang W, et al. Central nervous system malformations and deformations in FGFR2-related craniosynostosis. Am J Med Genet A. 2012;158A:2797–806.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Hill CA, Martinez-Abadias N, Motch SM, et al. Postnatal brain and skull growth in an Apert syndrome mouse model. Am J Med Genet A. 2013;161A:745–57.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Allanson JE, Roberts AE. Noonan syndrome. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K, editors. GeneReviews. Seattle: University of Washington; 1993.Google Scholar
  45. 45.
    Gripp KW, Lin AE. Costello syndrome. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K, editors. GeneReviews. Seattle: University of Washington; 1993.Google Scholar
  46. 46.
    Gripp KW, Hopkins E, Doyle D, Dobyns WB. High incidence of progressive postnatal cerebellar enlargement in Costello syndrome: brain overgrowth associated with HRAS mutations as the likely cause of structural brain and spinal cord abnormalities. Am J Med Genet A. 2010;152A:1161–8.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Pascual-Castroviejo I, Pascual-Pascual SI, Velazquez-Fragua R, Viano J, Carceller-Benito F. Aqueductal stenosis in the neurofibromatosis type 1. Presentation of 19 infantile patients. Rev Neurol. 2007;45:18–21.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Mirzaa GM, Conway RL, Gripp KW, et al. Megalencephaly-capillary malformation (MCAP) and megalencephaly-polydactyly-polymicrogyria-hydrocephalus (MPPH) syndromes: two closely related disorders of brain overgrowth and abnormal brain and body morphogenesis. Am J Med Genet A. 2012;158A:269–91.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Plawner LL, Delgado MR, Miller VS, et al. Neuroanatomy of holoprosencephaly as predictor of function: beyond the face predicting the brain. Neurology. 2002;59:1058–66.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Williams D, Patel C, Fallet-Bianco C, et al. Fowler syndrome-a clinical, radiological, and pathological study of 14 cases. Am J Med Genet A. 2010;152A:153–60.PubMedCrossRefGoogle Scholar
  51. 51.
    Kato M, Das S, Petras K, et al. Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Hum Mutat. 2004;23:147–59.PubMedCrossRefGoogle Scholar
  52. 52.
    Briard ML, le Merrer M, Plauchu H, et al. Association of VACTERL and hydrocephalus: a new familial entity. Ann Genet. 1984;27:220–3.PubMedGoogle Scholar
  53. 53.
    Porteous ME, Cross I, Burn J. VACTERL with hydrocephalus: one end of the Fanconi anemia spectrum of anomalies? Am J Med Genet. 1992;43:1032–4.PubMedCrossRefGoogle Scholar
  54. 54.
    McCauley J, Masand N, McGowan R, et al. X-linked VACTERL with hydrocephalus syndrome: further delineation of the phenotype caused by FANCB mutations. Am J Med Genet A. 2011;155A:2370–80.PubMedCrossRefGoogle Scholar
  55. 55.
    Evans JA, Chodirker BN. Absence of excess chromosome breakage in a patient with VACTERL-hydrocephalus. Am J Med Genet. 1993;47:112–3.PubMedCrossRefGoogle Scholar
  56. 56.
    Ishak GE, Dempsey JC, Shaw DW, et al. Rhombencephalosynapsis: a hindbrain malformation associated with incomplete separation of midbrain and forebrain, hydrocephalus and a broad spectrum of severity. Brain J Neurol. 2012;135:1370–86.CrossRefGoogle Scholar
  57. 57.
    Tully HM, Dempsey JC, Ishak GE, et al. Beyond Gomez-Lopez-Hernandez syndrome: recurring phenotypic themes in rhombencephalosynapsis. Am J Med Genet A. 2012;158A:2393–406.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Paciorkowski AR, Greenstein RM. When is enlargement of the subarachnoid spaces not benign? A genetic perspective. Pediatr Neurol. 2007;37:1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Schoner K, Kohlhase J, Müller AM, et al. Hydrocephalus, agenesis of the corpus callosum, and cleft lip/palate represent frequent associations in fetuses with Peters’ plus syndrome and B3GALTL mutations. Fetal PPS phenotypes, expanded by Dandy Walker cyst and encephalocele. Prenat Diagn. 2013;33:75–80.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Wessels MW, den Hollander NS, Willems PJ. Mild fetal cerebral ventriculomegaly as a prenatal sonographic marker for Kartagener syndrome. Prenat Diagn. 2003;23:239–42.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Vieira JP, Lopes P, Silva R. Primary ciliary dyskinesia and hydrocephalus with aqueductal stenosis. J Child Neurol. 2012;27:938–41.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Hogge WA, Blank C, Roochvarg LB, Hogge JS, Wulfsberg EA, Raffel LJ. Gorlin syndrome (naevoid basal cell carcinoma syndrome): prenatal detection in a fetus with macrocephaly and ventriculomegaly. Prenat Diagn. 1994;14:725–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Mitchell EA, Cairns LM, Hodge JL. Rothmund-Thomson syndrome (poikiloderma congenitale) associated with hydrocephalus. Aust Paediatr J. 1980;16:290–1.PubMedGoogle Scholar
  64. 64.
    Muller EA, Aradhya S, Atkin JF, et al. Microdeletion 9q22.3 syndrome includes metopic craniosynostosis, hydrocephalus, macrosomia, and developmental delay. Am J Med Genet A. 2012;158A:391–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Hwu WL, Kuo PL, Hung YT, Chien YH, Chu SY. Partial trisomy 1 with congenital hydrocephalus and hypogammaglobulinemia: report of one case. Acta paediatrica Taiwanica [Taiwan er ke yi xue hui za zhi]. 2004;45:97–9.Google Scholar
  66. 66.
    Eash D, Waggoner D, Chung J, Stevenson D, Martin CL. Calibration of 6q subtelomere deletions to define genotype/phenotype correlations. Clin Genet. 2005;67:396–403.PubMedCrossRefGoogle Scholar
  67. 67.
    Bertini V, De Vito G, Costa R, Simi P, Valetto A. Isolated 6q terminal deletions: an emerging new syndrome. Am J Med Genet A. 2006;140:74–81.PubMedCrossRefGoogle Scholar
  68. 68.
    Morava E, Bartsch O, Czako M, et al. Small inherited terminal duplication of 7q with hydrocephalus, cleft palate, joint contractures, and severe hypotonia. Clin Dysmorphol. 2003;12:123–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Schrander-Stumpel C, Fryns JP. Congenital hydrocephalus: nosology and guidelines for clinical approach and genetic counselling. Eur J Pediatr. 1998;157:355–62.PubMedCrossRefGoogle Scholar
  70. 70.
    Jaraj D, Agerskov S, Rabiei K, et al. Vascular factors in suspected normal pressure hydrocephalus: a population-based study. Neurology. 2016;86:592–9.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Hiraoka K, Narita W, Kikuchi H, et al. Amyloid deposits and response to shunt surgery in idiopathic normal-pressure hydrocephalus. J Neurol Sci. 2015;356:124–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Odagiri H, Baba T, Nishio Y, et al. Clinical characteristics of idiopathic normal pressure hydrocephalus with Lewy body diseases. J Neurol Sci. 2015;359:309–11.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Kato T, Sato H, Emi M, et al. Segmental copy number loss of SFMBT1 gene in elderly individuals with ventriculomegaly: a community-based study. Intern Med. 2011;50:297–303.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Zhang J, Bonasio R, Strino F, et al. SFMBT1 functions with LSD1 to regulate expression of canonical histone genes and chromatin-related factors. Genes Dev. 2013;27:749–66.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Yang HC, Liang YJ, Chen JW, et al. Identification of IGF1, SLC4A4, WWOX, and SFMBT1 as hypertension susceptibility genes in Han Chinese with a genome-wide gene-based association study. PLoS One. 2012;7:e32907.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Chung RH, Chiu YF, Hung YJ, et al. Genome-wide copy number variation analysis identified deletions in SFMBT1 associated with fasting plasma glucose in a Han Chinese population. BMC Genomics. 2017;18:591.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Kottgen A, Albrecht E, Teumer A, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet. 2013;45:145–54.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Gould DB, Phalan FC, Breedveld GJ, et al. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science. 2005;308:1167–71.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    McCarty JH, Lacy-Hulbert A, Charest A, et al. Selective ablation of alphav integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death. Development. 2005;132:165–76.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Srivastava M, Atwater I, Glasman M, et al. Defects in inositol 1,4,5-trisphosphate receptor expression, Ca(2+) signaling, and insulin secretion in the anx7(+/−) knockout mouse. Proc Natl Acad Sci U S A. 1999;96:13783–8.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Ryckman KK, Dagle JM, Kelsey K, Momany AM, Murray JC. Replication of genetic associations in the inflammation, complement, and coagulation pathways with intraventricular hemorrhage in LBW preterm neonates. Pediatr Res. 2011;70:90–5.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Yung YC, Mutoh T, Lin ME, et al. Lysophosphatidic acid signaling may initiate fetal hydrocephalus. Sci Transl Med. 2011;3:99ra87.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Park R, Moon UY, Park JY, et al. Yap is required for ependymal integrity and is suppressed in LPA-induced hydrocephalus. Nat Commun. 2016;7:10329.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Karimy JK, Zhang J, Kurland DB, et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med. 2017;23:997–1003.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Gagnon KB, Delpire E. Molecular physiology of SPAK and OSR1: two Ste20-related protein kinases regulating ion transport. Physiol Rev. 2012;92:1577–617.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Tully HM. Anatomical configurations associated with posthemorrhagic hydrocephalus among premature infants with intraventricular hemorrhage. Neurosurg Focus. 2016;41:E5.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    McLone DG, Knepper PA. The cause of Chiari II malformation: a unified theory. Pediatr Neurosci. 1989;15:1–12.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Sweeney KJ, Caird J, Sattar MT, Allcutt D, Crimmins D. Spinal level of myelomeningocele lesion as a contributing factor in posterior fossa volume, intracranial cerebellar volume, and cerebellar ectopia. J Neurosurg Pediatr. 2013;11:154–9.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Seo JH, Zilber Y, Babayeva S, et al. Mutations in the planar cell polarity gene, Fuzzy, are associated with neural tube defects in humans. Hum Mol Genet. 2011;20:4324–33.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Bartsch O, Kirmes I, Thiede A, et al. Novel VANGL1 gene mutations in 144 Slovakian, Romanian and German patients with neural tube defects. Mol Syndromol. 2012;3:76–81.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Allache R, De Marco P, Merello E, Capra V, Kibar Z. Role of the planar cell polarity gene CELSR1 in neural tube defects and caudal agenesis. Birth Defects Res A Clin Mol Teratol. 2012;94:176–81.PubMedCrossRefGoogle Scholar
  92. 92.
    Juriloff DM, Harris MJ. A consideration of the evidence that genetic defects in planar cell polarity contribute to the etiology of human neural tube defects. Birth Defects Res A Clin Mol Teratol. 2012;94:824–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hannah Tully
    • 1
  • Annie Laquerriere
    • 2
  • Dan Doherty
    • 3
  • William Dobyns
    • 4
  1. 1.Department of NeurologyUniversity of Washington and Seattle Children’s Hospital, Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUSA
  2. 2.Pathology Laboratory, Rouen University Hospital and Inserm Unit 1245, Team Genetics and Pathophysiology of Neurodevelopmental Disorders, IRIBRouenFrance
  3. 3.Department of PediatricsUniversity of Washington and Seattle Children’s Hospital, Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUSA
  4. 4.Department of GeneticsUniversity of Washington, Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUSA

Personalised recommendations