Advertisement

Technical Advances in the Treatment of Hydrocephalus: Current and Future State

  • Jason S. Hauptman
  • Barry R. Lutz
  • Brian W. Hanak
  • Samuel R. Browd
Chapter

Abstract

In this chapter, we attempt to summarize the present and future state of technologies driven to diagnose and treat hydrocephalus. First, we focus on components of shunt devices, the most common surgical intervention employed to treat hydrocephalus. Second, we examine technologies used to diagnose shunt malfunction. While there has been considerable progress made over the last half-century, much work is left to be done.

Keywords

Innovation Technology Hydrocephalus Smart shunt Shunt malfunction 

References

  1. 1.
    Nulsen FE, Spitz EB. Treatment of hydrocephalus by direct shunt from ventricle to jugular vain. Surg Forum. 1951:399–403.Google Scholar
  2. 2.
    Tomei KL. The evolution of cerebrospinal fluid shunts: advances in technology and technique. Pediatr Neurosurg. 2017;52(6):369–80.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Weisenberg SH, et al. Ventricular catheter development: past, present, and future. J Neurosurg. 2016;125(6):1504–12.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Pudenz RH, et al. Ventriculo-auriculostomy; a technique for shunting cerebrospinal fluid into the right auricle; preliminary report. J Neurosurg. 1957;14(2):171–9.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Ames RH. Ventriculo-peritoneal shunts in the management of hydrocephalus. J Neurosurg. 1967;27(6):525–9.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Izci Y, et al. Initial experience with silver-impregnated polyurethane ventricular catheter for shunting of cerebrospinal fluid in patients with infected hydrocephalus. Neurol Res. 2009;31(3):234–7.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Kestle J, et al. Long-term follow-up data from the Shunt Design Trial. Pediatr Neurosurg. 2000;33(5):230–6.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Korinek AM, et al. Morbidity of ventricular cerebrospinal fluid shunt surgery in adults: an 8-year study. Neurosurgery. 2011;68(4):985–94; discussion 994–5PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Attenello FJ, et al. Hospital costs associated with shunt infections in patients receiving antibiotic-impregnated shunt catheters versus standard shunt catheters. Neurosurgery. 2010;66(2):284–9; discussion 289PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ritz R, et al. Do antibiotic-impregnated shunts in hydrocephalus therapy reduce the risk of infection? An observational study in 258 patients. BMC Infect Dis. 2007;7:38.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kestle JR, et al. A new Hydrocephalus Clinical Research Network protocol to reduce cerebrospinal fluid shunt infection. J Neurosurg Pediatr. 2016;17(4):391–6.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Konstantelias AA, et al. Antimicrobial-impregnated and -coated shunt catheters for prevention of infections in patients with hydrocephalus: a systematic review and meta-analysis. J Neurosurg. 2015;122(5):1096–112.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Klimo P Jr, et al. Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 7: Antibiotic-impregnated shunt systems versus conventional shunts in children: a systematic review and meta-analysis. J Neurosurg Pediatr. 2014;14(Suppl 1):53–9.CrossRefGoogle Scholar
  14. 14.
    Parker SL, et al. Cost savings associated with antibiotic-impregnated shunt catheters in the treatment of adult and pediatric hydrocephalus. World Neurosurg. 2015;83(3):382–6.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Klimo P Jr, et al. Antibiotic-impregnated shunt systems versus standard shunt systems: a meta- and cost-savings analysis. J Neurosurg Pediatr. 2011;8(6):600–12.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Jenkinson MD, et al. The British antibiotic and silver-impregnated catheters for ventriculoperitoneal shunts multi-centre randomised controlled trial (the BASICS trial): study protocol. Trials. 2014;15:4.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Bridgett MJ, et al. In vitro assessment of bacterial adhesion to Hydromer-coated cerebrospinal fluid shunts. Biomaterials. 1993;14(3):184–8.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kaufmann AM, et al. Infection rates in standard vs. hydrogel coated ventricular catheters. Can J Neurol Sci. 2004;31(4):506–10.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kestle JR, et al. A standardized protocol to reduce cerebrospinal fluid shunt infection: the Hydrocephalus Clinical Research Network Quality Improvement Initiative. J Neurosurg Pediatr. 2011;8(1):22–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Xu H, et al. Hydrogel-coated ventricular catheters for high-risk patients receiving ventricular peritoneum shunt. Medicine (Baltimore). 2016;95(29):e4252.CrossRefGoogle Scholar
  21. 21.
    Tung H, Raffel C, McComb JG. Ventricular cerebrospinal fluid eosinophilia in children with ventriculoperitoneal shunts. J Neurosurg. 1991;75(4):541–4.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Traynelis VC, et al. Cerebrospinal fluid eosinophilia and sterile shunt malfunction. Neurosurgery. 1988;23(5):645–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Ellis MJ, et al. Treatment of recurrent ventriculoperitoneal shunt failure associated with persistent cerebrospinal fluid eosinophilia and latex allergy by use of an “extracted” shunt. J Neurosurg Pediatr. 2008;1(3):237–9.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Pittman T, et al. The role of ethylene oxide allergy in sterile shunt malfunctions. Br J Neurosurg. 1994;8(1):41–5.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Hakim S. Observations on the physiopathology of the CSF pulse and prevention of ventricular catheter obstruction in valve shunts. Dev Med Child Neurol Suppl. 1969;20:42–8.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Sarkiss CA, et al. Time dependent pattern of cellular characteristics causing ventriculoperitoneal shunt failure in children. Clin Neurol Neurosurg. 2014;127:30–2.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Blegvad C, et al. Pathophysiology of shunt dysfunction in shunt treated hydrocephalus. Acta Neurochir. 2013;155(9):1763–72.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Del Bigio MR. Biological reactions to cerebrospinal fluid shunt devices: a review of the cellular pathology. Neurosurgery. 1998;42(2):319–25; discussion 325–6PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Sekhar LN, Moossy J, Guthkelch AN. Malfunctioning ventriculoperitoneal shunts. Clinical and pathological features. J Neurosurg. 1982;56(3):411–6.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kraemer MR, et al. Shunt-dependent hydrocephalus: management style among members of the American Society of Pediatric Neurosurgeons. J Neurosurg Pediatr. 2017;20(3):216–24.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Haase J, Weeth R. Multiflanged ventricular Portnoy catheter for hydrocephalus shunts. Acta Neurochir. 1976;33(3–4):213–8.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Harris CA, McAllister JP 2nd. What we should know about the cellular and tissue response causing catheter obstruction in the treatment of hydrocephalus. Neurosurgery. 2012;70(6):1589–601; discussion 1601–2PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Browd SR, et al. Failure of cerebrospinal fluid shunts: part I: obstruction and mechanical failure. Pediatr Neurol. 2006;34(2):83–92.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Hanak BW, et al. Toward a better understanding of the cellular basis for cerebrospinal fluid shunt obstruction: report on the construction of a bank of explanted hydrocephalus devices. J Neurosurg Pediatr. 2016;18(2):213–23.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Chambi I, Hendrick EB. A technique for removal of an adherent ventricular catheter. Pediatr Neurosci. 1988;14(4):216–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Davalos D, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8(6):752–8.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kim JV, Dustin ML. Innate response to focal necrotic injury inside the blood-brain barrier. J Immunol. 2006;177(8):5269–77.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Morales I, et al. Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci. 2014;8:112.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Harris CA, McAllister JP 2nd. Does drainage hole size influence adhesion on ventricular catheters? Childs Nerv Syst. 2011;27(8):1221–32.PubMedCrossRefGoogle Scholar
  40. 40.
    Drake JM, Sainte-Rose C. The shunt book. New York: Wiley; 1995.Google Scholar
  41. 41.
    Harris CA, et al. Effects of surface wettability, flow, and protein concentration on macrophage and astrocyte adhesion in an in vitro model of central nervous system catheter obstruction. J Biomed Mater Res A. 2011;97(4):433–40.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Harris CA, et al. Reduction of protein adsorption and macrophage and astrocyte adhesion on ventricular catheters by polyethylene glycol and N-acetyl-L-cysteine. J Biomed Mater Res A. 2011;98(3):425–33.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Lin J, et al. Computational and experimental study of proximal flow in ventricular catheters. Technical note. J Neurosurg. 2003;99(2):426–31.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Galarza M, et al. Computational fluid dynamics of ventricular catheters used for the treatment of hydrocephalus: a 3D analysis. Childs Nerv Syst. 2014;30(1):105–16.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Lutz BR, Venkataraman P, Browd SR. New and improved ways to treat hydrocephalus: pursuit of a smart shunt. Surg Neurol Int. 2013;4(Suppl 1):S38–50.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Hanak BW, et al. Cerebrospinal fluid shunting complications in children. Pediatr Neurosurg. 2017;52(6):381–400.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Craighead HG, et al. Chemical and topographical surface modification for control of central nervous system cell adhesion. Biomed Microdevices. 1998;1(1):49–64.CrossRefGoogle Scholar
  48. 48.
    Minev IR, et al. Interaction of glia with a compliant, microstructured silicone surface. Acta Biomater. 2013;9(6):6936–42.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Turner AM, et al. Attachment of astroglial cells to microfabricated pillar arrays of different geometries. J Biomed Mater Res. 2000;51(3):430–41.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Lee H, et al. Mechanical evaluation of unobstructing magnetic microactuators for implantable ventricular catheters. J Microelectromech Syst. 2014;23(4):795–802.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lee SA, et al. Magnetic microactuators for MEMS-enabled ventricular catheters for hydrocephalus. Conf Proc IEEE Eng Med Biol Soc. 2006;1:2494–7.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Yoon HJ, et al. Micro devices for a cerebrospinal fluid (CSF) shunt system. Sens Actuators A Phys. 2004;110(1–3):68–76.CrossRefGoogle Scholar
  53. 53.
    Judy JW, Muller RS. Magnetic microactuation of torsional polysilicon structures. Sens Actuators A Phys. 1996;53(1–3):392–7.CrossRefGoogle Scholar
  54. 54.
    Lee H, et al. Evaluation of magnetic resonance imaging issues for implantable microfabricated magnetic actuators. Biomed Microdevices. 2014;16(1):153–61.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Ghajar JB. A guide for ventricular catheter placement. Technical note. J Neurosurg. 1985;63(6):985–6.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    O’Leary ST, et al. Efficacy of the Ghajar Guide revisited: a prospective study. J Neurosurg. 2000;92(5):801–3.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Ozerov S, et al. The use of a smartphone-assisted ventricle catheter guide for Ommaya reservoir placement-experience of a retrospective bi-center study. Childs Nerv Syst. 2018;34(5):853–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Levitt MR, et al. Image-guided cerebrospinal fluid shunting in children: catheter accuracy and shunt survival. J Neurosurg Pediatr. 2012;10(2):112–7.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Whitehead WE, et al. No significant improvement in the rate of accurate ventricular catheter location using ultrasound-guided CSF shunt insertion: a prospective, controlled study by the Hydrocephalus Clinical Research Network. J Neurosurg Pediatr. 2013;12(6):565–74.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Riva-Cambrin J, et al. Risk factors for shunt malfunction in pediatric hydrocephalus: a multicenter prospective cohort study. J Neurosurg Pediatr. 2016;17(4):382–90.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Akbari SH, et al. Surgical management of complex multiloculated hydrocephalus in infants and children. Childs Nerv Syst. 2015;31(2):243–9.CrossRefGoogle Scholar
  62. 62.
    Sainte-Rose C. Shunt obstruction: a preventable complication? Pediatr Neurosurg. 1993;19(3):156–64.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Hoffman HJ, Smith MS. The use of shunting devices for cerebrospinal fluid in Canada. Can J Neurol Sci. 1986;13(2):81–7.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Buster BE, et al. Proximal ventricular shunt malfunctions in children: factors associated with failure. J Clin Neurosci. 2016;24:94–8.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Becker DP, Nulsen FE. Control of hydrocephalus by valve-regulated venous shunt: avoidance of complications in prolonged shunt maintenance. J Neurosurg. 1968;28(3):215–26.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Whitehead WE, et al. Ventricular catheter entry site and not catheter tip location predicts shunt survival: a secondary analysis of 3 large pediatric hydrocephalus studies. J Neurosurg Pediatr. 2017;19(2):157–67.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Whitehead WE. A randomized controlled trial of anterior versus posterior entry site for CSF shunt insertion. 2014. Available from: http://hcrn.org/research/entry-site/.
  68. 68.
    Qin C, Stamos B, Dasgupta PK. Inline shunt flow monitor for hydrocephalus. Anal Chem. 2017;89(15):8170–6.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Bork T, et al. Development and in-vitro characterization of an implantable flow sensing transducer for hydrocephalus. Biomed Microdevices. 2010;12(4):607–18.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Basati S, et al. Impedance changes indicate proximal ventriculoperitoneal shunt obstruction in vitro. IEEE Trans Biomed Eng. 2015;62(12):2787–93.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Raj R, et al. Demonstration that a new flow sensor can operate in the clinical range for cerebrospinal fluid flow. Sens Actuators A Phys. 2015;234:223–31.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Wakeland W, McNames J, Goldstein B. Calibrating an intracranial pressure dynamics model with clinical data—a progress report. Conf Proc IEEE Eng Med Biol Soc. 2004;1:746–9.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Wakeland W, Goldstein B. A review of physiological simulation models of intracranial pressure dynamics. Comput Biol Med. 2008;38(9):1024–41.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Szczesny S, Jetzki S, Leonhardt S. Review of current actuator suitability for use in medical implants. Conf Proc IEEE Eng Med Biol Soc. 2006;1:5956–9.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Antonucci MC, et al. The burden of ionizing radiation studies in children with ventricular shunts. J Pediatr. 2017;182:210–216.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Watanabe A, Seguchi T, Hongo K. Overdrainage of cerebrospinal fluid caused by detachment of the pressure control cam in a programmable valve after 3-tesla magnetic resonance imaging. J Neurosurg. 2010;112(2):425–7.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Lavinio A, et al. Magnetic field interactions in adjustable hydrocephalus shunts. J Neurosurg Pediatr. 2008;2(3):222–8.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Bullivant KJ, Mitha AP, Hamilton MG. Management of a locked Strata valve. J Neurosurg Pediatr. 2009;3(4):340–3.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Thompson EM, et al. Using a 2-variable method in radionuclide shuntography to predict shunt patency. J Neurosurg. 2014;121(6):1504–7.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Frank E, Buonocore M, Hein L. The use of magnetic resonance imaging to assess slow fluid flow in a model cerebrospinal fluid shunt system. Br J Neurosurg. 1990;4(1):53–7.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Frank E, Buonocore M, Hein L. Magnetic resonance imaging analysis of extremely slow flow in a model shunt system. Childs Nerv Syst. 1992;8(2):73–5.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Frank E, Buonocore M, Hein L. The effect of position on magnetic resonance evaluation of cerebrospinal fluid shunt function. Neurol Res. 1994;16(3):168–70.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Hartman R, et al. Quantitative contrast-enhanced ultrasound measurement of cerebrospinal fluid flow for the diagnosis of ventricular shunt malfunction. J Neurosurg. 2015;123(6):1420–6.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Aralar AJ, et al. Ultrasound characterization of interface oscillation as a proxy for ventriculoperitoneal shunt function. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:215–8.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Zaidi SJ, Yamamoto LG. Optic nerve sheath diameter measurements by CT scan in ventriculoperitoneal shunt obstruction. Hawaii J Med Public Health. 2014;73(8):251–5.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Newman WD, et al. Measurement of optic nerve sheath diameter by ultrasound: a means of detecting acute raised intracranial pressure in hydrocephalus. Br J Ophthalmol. 2002;86(10):1109–13.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Hall MK, et al. Bedside optic nerve sheath diameter ultrasound for the evaluation of suspected pediatric ventriculoperitoneal shunt failure in the emergency department. Childs Nerv Syst. 2013;29(12):2275–80.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Ertl M, et al. Measuring changes in the optic nerve sheath diameter in patients with idiopathic normal-pressure hydrocephalus: a useful diagnostic supplement to spinal tap tests. Eur J Neurol. 2017;24(3):461–7.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Pershad J, et al. Imaging strategies for suspected acute cranial shunt failure: a cost-effectiveness analysis. Pediatrics. 2017;140(2):pii: e20164263.CrossRefGoogle Scholar
  90. 90.
    Lin SD, et al. The use of ultrasound-measured optic nerve sheath diameter to predict ventriculoperitoneal shunt failure in children. Pediatr Emerg Care. 2017;  https://doi.org/10.1097/PEC.0000000000001034.
  91. 91.
    Sakka L, et al. Validation of a noninvasive test routinely used in otology for the diagnosis of cerebrospinal fluid shunt malfunction in patients with normal pressure hydrocephalus. J Neurosurg. 2016;124(2):342–9.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Neff S. Measurement of flow of cerebrospinal fluid in shunts by transcutaneous thermal convection. Technical note. J Neurosurg. 2005;103(4 Suppl):366–73.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Madsen JR, et al. Evaluation of the ShuntCheck noninvasive thermal technique for shunt flow detection in hydrocephalic patients. Neurosurgery. 2011;68(1):198–205; discussion 205PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Marlin AE, Gaskill SJ. The use of transcutaneous thermal convection analysis to assess shunt function in the pediatric population. Neurosurgery. 2012;70(6):181–3.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Johansson SB, et al. A MEMS-based passive hydrocephalus shunt for body position controlled intracranial pressure regulation. Biomed Microdevices. 2014;16(4):529–36.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Apigo DJ, et al. An Angstrom-sensitive, differential MEMS capacitor for monitoring the milliliter dynamics of fluids. Sens Actuators A Phys. 2016;251:234–40.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Song SH, et al. Inductively coupled microfluidic pressure meter for in vivo monitoring of cerebrospinal fluid shunt function. J Med Eng Technol. 2012;36(3):156–62.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Kim BJ, et al. Parylene MEMS patency sensor for assessment of hydrocephalus shunt obstruction. Biomed Microdevices. 2016;18(5):87.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jason S. Hauptman
    • 1
  • Barry R. Lutz
    • 2
  • Brian W. Hanak
    • 3
  • Samuel R. Browd
    • 1
  1. 1.Seattle Children’s Hospital, University of Washington, Department of NeurosurgerySeattleUSA
  2. 2.Department of BioengineeringUniversity of WashingtonSeattleUSA
  3. 3.University of Washington, Neurological SurgerySeattleUSA

Personalised recommendations