Shunts and Shunt Malfunction

  • Prashant Hariharan
  • Carolyn A. HarrisEmail author


Perhaps one of the most intriguing events in neurosurgical history is the invention and use of the shunt system to treat hydrocephalus, despite the shunt’s high failure rates. The shunt system, classically composed of a proximal catheter, valve, and distal catheter, was developed in the 1950s. The system was envisioned by John Holter, a toolmaker, whose son, Casey, had hydrocephalus. The concept, modeled after the nipple of a baby bottle, allowed for one-way flow through a pressure-regulated valve. The shunt system could take advantage of surgical aseptic technique (1860s), and followed historical predecessors: the external ventricular drain (1881), and ventricular-subdural shunts made of glass wool, gold tubes, bundled catgut (1890s), rubber (1903), glass, silver, and linen threads (1908–1926). Catheters from the ventricles to the cisterna magna and Nulsen-Spitz’s ventriculo-jugular shunt were revolutionary precursors made of rubber or polyethylene (1940–1950) [1]. The Spitz–Holter valve is the result of these efforts and that of John Holter. The modern-day shunt remains similar now as when it was created (1955, implanted in 1957/58): slight modifications to the catheter, major iterations to the shunt valve, and the addition of compensators for gravity and siphoning are key components to treatment.


Ventricular catheter obstruction Foreign body response in CNS Gliosis Frustrated phagocytosis BBB disruption Cell–biomaterial interaction Shunt system Shunt failure 


  1. 1.
    Weisenberg SH, TerMaath SC, Seaver CE, Killeffer JA. Ventricular catheter development: past, present, and future. J Neurosurg. 2016; Epub ahead:1–9.Google Scholar
  2. 2.
    Harris CA, McAllister JP. What we should know about the cellular and tissue response causing catheter obstruction in the treatment of hydrocephalus. Neurosurgery. 2012;70(6):1589–601.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Browd S. Bioengineering advancements to hydrocephalus treatment. In: Center for Integrative Brain Research Internal Review, Seattle Children’s Research Institute. Seattle; 2012.Google Scholar
  4. 4.
    Enchev Y, Oi S. Historical trends of neuroendoscopic surgical techniques in the treatment of hydrocephalus. Neurosurg Rev. 2008;31(3):249–62.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Al-Tamimi YZ, Sinha P, Chumas PD, Crimmins D, Drake J, Kestle J, et al. Ventriculoperitoneal shunt 30-day failure rate: A retrospective international cohort study. Neurosurgery. 2014;74(1):29.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Riva-Cambrin J, Kestle JRW, Holubkov R, Butler J, Kulkarni AV, Drake J, et al. Risk factors for shunt malfunction in pediatric hydrocephalus: a multicenter prospective cohort study. J Neurosurg Pediatr. 2016;17(4):382.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Chen H, Riva-Cambrin J, Brockmeyer DL, Walker ML, Kestle JR. Shunt failure due to intracranial migration of BioGlide ventricular catheters. J Neurosurg Pediatr. 2011;7(4):408–12.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Khan F, Shamim MS, Rehman A, Bari ME. Analysis of factors affecting ventriculoperitoneal shunt survival in pediatric patients. Childs Nerv Syst. 2013;29(5):791.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Khan F, Rehman A, Shamim MS, Bari ME. Factors affecting ventriculoperitoneal shunt survival in adult patients. Surg Neurol Int. 2015;6:25.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Tuli S, O’Hayon B, Drake JM, Clarke M, Kestle J. Change in ventricular size and effect of ventricular catheter placement in pediatric patients with shunted hydrocephalus. Neurosurgery. 1999;45(6):1329–33.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Whitehead WE, Riva-Cambrin J, Kulkarni A, Wellons JC, Rozzelle CJ, Tamber M, et al. Ventricular catheter entry site and not catheter tip location predicts shunt survival: a secondary analysis of 3 large pediatric hydrocephalus studies. J neurosurg Pediatr [Internet]. 2017 [cited 2017 Oct 24];19(19):157–67. Available from: Scholar
  12. 12.
    Hanak BW, Bonow RH, Harris CA, Browd SR. Cerebrospinal fluid shunting complications in children. Pediatr Neurosurg [Internet]. 2017 [cited 2017 Oct 24];(0). Available from:
  13. 13.
    Drake JM, Kestle JR, Tuli S. CSF shunts 50 years on--past, present, and future. Childs Nerv Syst. 2000;16(10–11):800–4.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Molina ME, Lema A, Palacios MG, Somoza I, Tellado M, Pita S, et al. 25 years experience in cerebrospinal shunt. Are new systems better? Cir Pediatr. 2008;21(4):223–7.PubMedPubMedCentralGoogle Scholar
  15. 15.
    McGirt MJ, Leveque J-C, Wellons JC, Villavicencio AT, Hopkins JS, Fuchs HE, et al. Cerebrospinal fluid shunt survival and etiology of failures: a seven-year institutional experience. Pediatr Neurosurg [Internet]. 2002 [cited 2017 Oct 24];36(5):248–55. Available from: Scholar
  16. 16.
    Choux M, Genitori L, Lang D, Lena G. Shunt implantation: reducing the incidence of shunt infection. J Neurosurg [Internet]. 1992 [cited 2017 Oct 13];77(6):875–80. Available from: Scholar
  17. 17.
    Simon TD, Butler J, Whitlock KB, Browd SR, Holubkov R, Kestle JRW, et al. Risk factors for first cerebrospinal fluid shunt infection: findings from a multi-center prospective cohort study. J Pediatr [internet]. 2014 [cited 2017 Oct 24];164(6):1462–8.e2. Available from: Scholar
  18. 18.
    Kestle JR, Garton HJ, Whitehead WE, Drake JM, Kulkarni AV, Cochrane DD, et al. Management of shunt infections: a multicenter pilot study. J Neurosurg. 2006;105(3 Suppl):177–81.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Simon TD, Hall M, Riva-Cambrin J, Albert JE, Jeffries HE, Lafleur B, et al. Infection rates following initial cerebrospinal fluid shunt placement across pediatric hospitals in the United States. J Neurosurg Pediatr. 2009;4(2):156–65.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bayston R, Milner RD. Antimicrobial activity of silicone rubber used in hydrocephalus shunts, after impregnation with antimicrobial substances. J Clin Pathol. 1981;34(9):1057–62.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Bayston R, Grove N, Siegel J, Lawellin D, Barsham S. Prevention of hydrocephalus shunt catheter colonisation in vitro by impregnation with antimicrobials. J Neurol Neurosurg Psychiatry. 1989;52(5):605–9.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Jenkinson MD, Gamble C, Hartley JC, Hickey H, Hughes D, Blundell M, et al. The British antibiotic and silver-impregnated catheters for ventriculoperitoneal shunts multi-Centre randomised controlled trial (the BASICS trial): study protocol. Trials. 2014 Jan;15(1):4.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Winkler KML, Woernle CM, Seule M, Held U, Bernays RL, Keller E. Antibiotic-impregnated versus silver-bearing external ventricular drainage catheters: preliminary results in a randomized controlled trial. Neurocrit Care. 2013 Apr;18(2):161–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Fichtner J, Güresir E, Seifert V, Raabe A. Efficacy of silver-bearing external ventricular drainage catheters: a retrospective analysis. J Neurosurg. 2010 Apr;112(4):840–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Xu H, Huang Y, Jiao W, Sun W, Li R, Li J, et al. Hydrogel-coated ventricular catheters for high-risk patients receiving ventricular peritoneum shunt. Medicine (Baltimore). 2016 Jul;95(29):e4252.CrossRefGoogle Scholar
  26. 26.
    Ritz R, Roser F, Morgalla M, Dietz K, Tatagiba M, Will BE. Do antibiotic-impregnated shunts in hydrocephalus therapy reduce the risk of infection? An observational study in 258 patients. BMC Infect Dis. 2007 Dec;7(1):38.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Konstantelias AA, Vardakas KZ, Polyzos KA, Tansarli GS, Falagas ME. Antimicrobial-impregnated and -coated shunt catheters for prevention of infections in patients with hydrocephalus: a systematic review and meta-analysis. J Neurosurg. 2015 May;122(5):1096–112.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Brydon HL, Bayston R, Hayward R, Harkness W, Hayward R, Harkness W. Reduced bacterial adhesion to hydrocephalus shunt catheters mediated by cerebrospinal fluid proteins. J Neurol Neurosurg Psychiatry [Internet]. 1996 [cited 2017 Jul 28];60(6):671–5. Available from: Scholar
  29. 29.
    Berstrom K, Osterberg E, Holmberg K, Hoffman AS, Schuman TP, Kozlowski A, et al. Effects of branching and molecular weight of surface-bound poly(ethylene oxide) on protein rejection. J Biomater Sci Polym Ed. 1994;6(2):123–32.CrossRefGoogle Scholar
  30. 30.
    Aldrich F, Harmann P. Disconnection as a cause of Ventriculoperitoneal shunt malfunction in multicomponent shunt systems. Pediatr Neurosurg. 1990;16(6):309–12.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Boelens JJ, Zaat SA, Meeldijk J, Dankert J. Subcutaneous abscess formation around catheters induced by viable and nonviable Staphylococcus epidermidis as well as by small amounts of bacterial cell wall components. J Biomed Mater Res. 2000;50(4):546–56.PubMedCrossRefGoogle Scholar
  32. 32.
    Kaufmann AM, Lye T, Redekop G, Brevner A, Hamilton M, Kozey M, et al. Infection rates in standard vs. hydrogel coated ventricular catheters. Can J Neurol Sci. 2004;31(4):506–10.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kestle JR, Riva-Cambrin J, Wellons JC, Kulkarni AV, Whitehead WE, Walker ML, et al. A standardized protocol to reduce cerebrospinal fluid shunt infection: the hydrocephalus clinical research network quality improvement initiative. J Neurosurg Pediatr. 2011;8(1):22–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Sainte-Rose C, Piatt JH, Renier D, Pierre-Kahn A, Hirsch JF, Hoffman HJ, et al. Mechanical complications in shunts. Pediatr Neurosurg. 1991–1992;17(1):2–9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Venkataraman P, Browd SR, Lutz BR. A physical framework for implementing virtual models of intracranial pressure and cerebrospinal fluid dynamics in hydrocephalus shunt testing. J Neurosurg Pediatr [Internet]. 2016;18(3):296–305. Available from: Scholar
  36. 36.
    Lutz B, Venkataraman P, Browd S. New and improved ways to treat hydrocephalus: Pursuit of a smart shunt. Surg Neurol Int [Internet]. 2013 [cited 2017 Jun 30];4(2):38. Available from: Scholar
  37. 37.
    Marupudi NI, Pavri T, Harris C, Haridas A, Ham S, Sood S. Lumbar-peritoneal shunting in hydrocephalus: preventing chiari malformations and decreasing shunt revisions. In: AANS 2016 annual scientific meeting [Internet]. Chicago: J Neurosurg; 2016 [cited 2017 Nov 1]. p. A1205–6. Available from:
  38. 38.
    Brydon HL, Hayward R, Harkness W, Bayston R. Physical properties of cerebrospinal fluid of relevance to shunt function. 1: the effect of protein upon CSF viscosity. Br J Neurosurg. 1995;9(5):639–44.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Harris CA, Resau JH, Hudson EA, West RA, Moon C, McAllister JP. Mechanical contributions to astrocyte adhesion using a novel in vitro model of catheter obstruction. Exp Neurol. 2010;222(2):204–10.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Czosnyka Z, Czosnyka M, Richards H, Pickard JD. Hydrodynamic properties of hydrocephalus shunts. Acta Neurochir Suppl. 1998;71:334–9.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Weisenberg SH. Improving ventricular catheter design through computational fluid dynamics. [cited 2017 Nov 1]; Available from:
  42. 42.
    Thomale UW, Hosch H, Koch A, Schulz M, Stoltenburg G, Haberl EJ, et al. Performation holes in ventricular catheters -- is less more? Childs Nerv Syst. 2010;26(6):781–9.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Gimenez A, Galarza M, Pellicer O, Valero J, Amigo JM. Influence of the hole geometry on the flow distribution in ventricular catheters for hydrocephalus. Biomed Eng Online. 2016;15(Suppl 1):71.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Linford RG, Ryan NW. Pulsatile flow in rigid tubes. J Appl Physiol. 1965;20(5):1078–82.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Giménez Á, Galarza M, Thomale U, Schuhmann MU, Valero J, Amigó JM. Pulsatile flow in ventricular catheters for hydrocephalus. Philos Trans R Soc A Math Eng Sci [Internet]. 2017 [cited 2017 Nov 1];375(2096):20160294. Available from:
  46. 46.
    Warf BC. Endoscopic third ventriculostomy and choroid plexus cauterization for pediatric hydrocephalus. Clin Neurosurg. 2007;54:78–82.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Warf BC. Pediatric hydrocephalus in east Africa: prevalence, causes, treatments, and strategies for the future. World Neurosurg. 2010;73:296–300.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Warf BC, Dewan M, Mugamba J. Management of Dandy-Walker complex-associated infant hydrocephalus by combined endoscopic third ventriculostomy and choroid plexus cauterization. J Neurosurg Pediatr. 2011;8(4):377–83.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Warf BC. Hydrocephalus in Uganda: the predominance of infectious origin and primary management with endoscopic third ventriculostomy. J Neurosurg. 2005;102(1 Suppl):1–15.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Liu TL, Zahedi S, Garling RJ, Kralickk F, Harris CA, Cheng MMC. Prosthetic arachnoid granulations using 3D printing technology. In: Proceedings of the IEEE international conference on micro electro mechanical systems (MEMS). 2017. p. 542–5.Google Scholar
  51. 51.
    Kralick F, Oh J, Medina T, Noh HM. Micro-fabricated shunt to mimic arachnoid granulations for the treatment of communicating hydrocephalus. Acta Neurochir Suppl. 2012;114:239–42.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Oh J, Liu K, Medina T, Kralick F, Noh HM. A novel microneedle array for the treatment of hydrocephalus. Microsyst Technol. 2014;20(6):1169–79.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Schwerdt HN, Amjad U, Appel J, Elhadi AM, Lei T, Preul MC, et al. In vitro hydrodynamic, transient, and overtime performance of a miniaturized valve for hydrocephalus. Ann Biomed Eng. 2015;43(3):603–15.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
  55. 55.
    CereVasc. Minimally invasive treatment of hydrocephalus | CereVasc [Internet]. [cited 2017 Nov 1]. Available from:
  56. 56.
    Eskandari R, Packer M, Burdett EC, McAllister JP. Effect of delayed intermittent ventricular drainage on ventriculomegaly and neurological deficits in experimental neonatal hydrocephalus. Childs Nerv Syst. 2012;28(11):1849–61.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Lee J-B, Ahn H-Y, Lee H-J, Yang J-H, Yi J-S, Lee I-W. Cerebrospinal fluid lumbar tapping utilization for suspected ventriculoperitoneal shunt under-drainage malfunctions. J Korean Neurosurg Soc [Internet]. 2017 [cited 2017 Nov 1];60(1):1–7. Available from: Scholar
  58. 58.
    Drake JM, Kestle JR, Milner R, Cinalli G, Boop F, Piatt JJ, et al. Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus. Neurosurgery. 1998;43(2):294–5.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Millward CP, Perez da Rosa S, Williams D, Kokai G, Byrne A, Pettorini B. Foreign body granuloma secondary to ventriculo-peritoneal shunt: a rare scenario with a new insight. Pediatr Neurosurg [Internet]. 2013 [cited 2017 Oct 31];49(4):236–9. Available from: Scholar
  60. 60.
    Harris CA, McAllister JP. Systems and methods for simulating flow of cerebrospinal fluid. Utah U of, editor. United States; 2010.Google Scholar
  61. 61.
    Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Kim J-K, Scott EA, Elbert DL. Proteomic analysis of protein adsorption: serum amyloid P adsorbs to materials and promotes leukocyte adhesion. J Biomed Mater Res A. 2005 Oct;75(1):199–209.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Warburg O, Posener O, Negelein K, Hanahan E, Weinberg D, Hu RA. All charged up about implanted biomaterials. Nat Publ Gr. 2013;31(45):309–44.Google Scholar
  64. 64.
    Mesure L, De Visscher G, Vranken I, Lebacq A, Flameng W. Gene expression study of monocytes/macrophages during early foreign body reaction and identification of potential precursors of myofibroblasts. PLoS One. 2010;5(9):e12949.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Dondossola E, Holzapfel BM, Alexander S, Filippini S, Hutmacher DW, Friedl P. Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat biomed Eng. 2016;1:0007. Scholar
  66. 66.
    Ginsberg HJ, Sum A, Drake JM, Cobbold RS. Ventriculoperitoneal shunt flow dependency on the number of patent holes in a ventricular catheter. Pediatr Neurosurg. 2000;33(1):7–11.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Zhu C, Yago T, Lou J, Zarnitsyna VI, McEver RP. Mechanisms for flow-enhanced cell adhesion. Ann Biomed Eng. 2008;36(4):604–21.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Harris CA, McAllister JP. Does drainage hole size influence adhesion on ventricular catheters? Childs Nerv Syst. 2011;27(8):1221–32.CrossRefGoogle Scholar
  69. 69.
    Harris CA, Resau JH, Hudson EA, West RA, Moon C, Black AD, et al. Effects of surface wettability, flow and protein concentration on macrohage and astrocyte adhesion in an in vitro model of central nervous system catheter obstruction. J Biomed Mater Res A. 2011;97(4):433–40.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Gram M, Sveinsdottir S, Cinthio M, Sveinsdottir K, Hansson SR, Mörgelin M, et al. Extracellular hemoglobin - mediator of inflammation and cell death in the choroid plexus following preterm intraventricular hemorrhage. J Neuroinflammation. 2014 Dec;11(1):200.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Karimy JK, Zhang J, Kurland DB, Theriault BC, Duran D, Stokum JA, et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med [Internet]. 2017;advance on (July). Available from:
  72. 72.
    Go KG, Ebels EJ, van Woerden H. Experiences with recurring ventricular catheter obstructions. Clin Neurol Neurosurg. 1981;83(2):47–56.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Özyol P, Özyol E, Karel F. Biocompatibility of intraocular lenses. Türk Oftalmol Derg. 2017;47(4):221–5.CrossRefGoogle Scholar
  74. 74.
    Huang X-D, Yao K, Zhang Z, Zhang Y, Wang Y. Uveal and capsular biocompatibility of an intraocular lens with a hydrophilic anterior surface and a hydrophobic posterior surface. J Cataract Refract Surg. 2010 Feb;36(2):290–8.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem Neurosci. 2015;6:48.PubMedCrossRefGoogle Scholar
  76. 76.
    Hanak B, Ross EF, Harris CA, Browd S, Shain W. Toward a better understanding of the cellular basis for cerebrospinal fluid shunt obstruction: report on the construction of a bank of explanted hydrocephalus devices. J Neurosurg Pediatr. 2016:1–11. Scholar
  77. 77.
    Moshayedi P, Ng G, Kwok JCF, Yeo GSH, Bryant CE, Fawcett JW, et al. The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials. 2014;35(13):3919–25.PubMedCrossRefGoogle Scholar
  78. 78.
    Pêgo AP, Pires LR, Rocha DN, Ambrosio L. The role of the surface on microglia function: implications for central nervous system tissue engineering.Google Scholar
  79. 79.
    Cherry JD, Olschowka JA, O’Banion M. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation. 2014 Jun;11(1):98.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci. 2016;19(8):987–91.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Saxena T, Karumbaiah L, Gaupp EA, Patkar R, Patil K, Betancur M, et al. The impact of chronic blood–brain barrier breach on intracortical electrode function. Biomaterials. 2013 Jul;34(20):4703–13.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Brydon HL, Keir G, Thompson EJ, Bayston R, Hayward R, Harkness W. Protein adsorption to hydrocephalus shunt catheters: CSF protein adsorption. J Neurol Neurosurg Psychiatry. 1998;64(5):643–7.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Bloomfield IG, Johnston IH, Bilston LE. Effects of proteins, blood cells and glucose on the viscosity of cerebrospinal fluid. Pediatr Neurosurg. 1998;28(5):246–51.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Jaeger CB, Winn SR, Tresco PA, Aebischer P. Repair of the blood-brain barrier following implantation of polymer capsules. Brain Res. 1991;551(1–2):163–70.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Sheikh Z, Brooks PJ, Barzilay O, Fine N, Glogauer M. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials. 2015;8:5671.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Love RJ, Jones KS. 2013. The recognition of biomaterials: Pattern recognition of medical polymers and their adsorbed biomolecules. J Biomed Mater Res Part A 2013:101A:2740–52.CrossRefGoogle Scholar
  87. 87.
    Whitehead WE, Riva-Cambrin J, Wellons JC, Kulkarni AV, Browd S, Limbrick D, et al. Factors associated with ventricular catheter movement and inaccurate catheter location: post hoc analysis of the hydrocephalus clinical research network ultrasound-guided shunt placement study. J Neurosurg Pediatr J Neurosurg Pediatr. 2014;14(14):173–8.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Kemp J, Flannery A, DA Tamber M. Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 9: effect of ventricular catheter entry point and position. J Neurosurg Pediatr. 2014;14:72–6.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Yamada SM, Kitagawa R, Teramoto A. Relationship of the location of the ventricular catheter tip and function of the ventriculoperitoneal shunt. J Clin Neurosci. 2013 Jan;20(1):99–101.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Blegvad C, Skjolding AD, Broholm H, Laursen H, Juhler M. Pathophysiology of shunt dysfunction in shunt treated hydrocephalus. Acta Neurochir. 2013; epub ahead.Google Scholar
  91. 91.
    Del Bigio MR. Biological reactions to cerebrospinal fluid shunt devices: a review of the cellular pathology. Neurosurgery. 1998;42(2):319–25.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Sridharan A, Rajan SD, Muthuswamy J, Nguyen JK, Capadona JR, Stice P, et al. Brain micromotion around implants in the rodent. J Neural Eng. 2006;3:189–95.CrossRefGoogle Scholar
  93. 93.
    Polanco M, Bawab S, Yoon H. Computational assessment of neural probe and brain tissue Interface under transient motion. Biosensors. 2016 Jun;6(2):27.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Shahim P, Tegner Y, Gustafsson B, Gren M, Ärlig J, Olsson M, et al. Neurochemical aftermath of repetitive mild traumatic brain injury. JAMA Neurol. 2016 Nov;73(11):1308.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Del Bigio MR, Bruni JE. Reaction of rabbit lateral periventricular tissue to shunt tubing implants. J Neurosurg. 1986;64(6):932–40.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Kraemer M, Iskandar BJ. Overdrainage-related ventricular tissue is a significant cause of proximal shunt obstruction. In: American Association of Neurological Surgeons. Chicago; 2016.Google Scholar
  97. 97.
    Sarkiss CA, Sarkar R, Yong W, Lazareff JA. Time dependent pattern of cellular characteristics causing ventriculoperitoneal shunt failure in children. Clin Neurol Neurosurg. 2014;127:30–2.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Sekhar LN, Moossy J, Norman GA. Malfunctioning ventriculoperitoneal shunts. J Neurosurg. 1982;56(3):411–6.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Weil ZM, Norman GJ, DeVries AC, Nelson RJ. The injured nervous system: a Darwinian perspective. Prog Neurobiol. 2008;86(1):48–59.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Jeong H-K, Ji K, Min K, Joe E-H. Brain inflammation and microglia: facts and misconceptions. Exp Neurobiol. 2013;22:59.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Jones JA, Chang DT, Meyerson H, Colton E, Kwon IK, Matsuda T, et al. Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J Biomed Mater Res A. 2007 Dec;83A(3):585–96.CrossRefGoogle Scholar
  102. 102.
    Lotti F, Ranieri F, Vadalà G, Zollo L, DPino G. Invasive intraneural interfaces: Foreign body reaction issues. Front Neurosci. 2017;11:1–14.CrossRefGoogle Scholar
  103. 103.
    Leung BK, Biran R, Underwood CJ, Tresco PA. Characterization of microglial attachment and cytokine release on biomaterials of differing surface chemistry. Biomaterials. 2008;29(23):3289–97.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Harris CA, Resau JH, Hudson EA, West RA, Moon C, Black AD, et al. Reduction of protein adsorption and macrophage and astrocyte adhesion on ventricular catheters by polyethylene glycol and N-acetyl- L -cysteine. J Biomed Mater Res A. 2011;98A(3):425–33.CrossRefGoogle Scholar
  105. 105.
    Achyuta AKH, Stephens KD, Lewis HGP, Murthy SK. Mitigation of reactive human cell adhesion on poly(dimethylsiloxane) by immobilized trypsin. Langmuir. 2010 Mar;26(6):4160–7.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Medow J. The permeable proximal catheter project: a novel approach to preventing shunt obstruction. In: American Association of Neurological Surgeons Annual Meeting, Pediatric Section; 2005.Google Scholar
  107. 107.
    Yang Q, Nguyen T, Liu C, Miller J, Rhoads JF, Linnes J, et al. Polyimide-based magnetic microactuators for biofouling removal. 2016;1–14.Google Scholar
  108. 108.
    Damanik FFR, Rothuizen TC, van Blitterswijk C, Rotmans JI, Moroni L. Towards an in vitro model mimicking the foreign body response: tailoring the surface properties of biomaterials to modulate extracellular matrix. Sci Rep. 2015 May;4(1):6325.CrossRefGoogle Scholar
  109. 109.
    Lee I, Vacanti JP, Taylor GA, Madsen JR. The living shunt: a tissue engineering approach in the treatment of hydrocephalus. Neurol Res. 2000;22(1):105–10.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Zhou K, Motamed S, Thouas GA, Bernard CC, Li D, Parkington HC, et al. Graphene functionalized scaffolds reduce the inflammatory response and supports endogenous neuroblast migration when implanted in the adult brain. Zhao F, editor. PLoS One. 2016;11(3):e0151589.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Materials Science, Department of Biomedical EngineeringWayne State UniversityDetroitUSA
  2. 2.Department of Chemical Engineering and Materials Science Department of Biomedical Engineering, Department of NeurosurgeryWayne State University Medical SchoolDetroitUSA

Personalised recommendations