Advertisement

Cerebrospinal Fluid Shunting

  • William E. Whitehead
Chapter

Abstract

Cerebrospinal fluid (CSF) shunting has significantly improved the lives of patients with hydrocephalus. It was a major advance in the 1950s when safe implantable materials for the manufacturing of shunt tubing and valves were identified. CSF shunts, however, are not a cure for hydrocephalus. In most cases, the shunted patient is faced with a lifelong commitment to an implanted device with a high failure rate. Shunts fail for a variety of reasons including obstruction, infection, and mechanical failure. Efforts to identify alternative treatment strategies and a cure will continue; however, until a better treatment is found, CSF shunts remain the mainstay of treatment for hydrocephalus. It is critical to understand how shunts work and fail and to identify ways to improve shunt function. This chapter explores these topics in detail.

Keywords

Cerebrospinal fluid (CSF) Hydrocephalus CSF shunts Ventriculoperitoneal shunt CSF shunt failure Outcome 

References

  1. 1.
    Aschoff A, Kremer P, Hashemi B, Kunze S. The scientific history of hydrocephalus and its treatment. Neurosurg Rev. 1999;22:67–93; discussion 4–5CrossRefGoogle Scholar
  2. 2.
    Wernicke C. Lehrbuch der Gehirnkrankheiten. Kassel: Fischer; 1881. p. 337–78.Google Scholar
  3. 3.
    Krause F. Chirurgie des Gehirns und des Ruckenmarks. Vienna: Urban and Schwarzenberg; 1911. p. 146–73.Google Scholar
  4. 4.
    Dandy WE. Ventriculography following the injection of air into ventricles. Ann Surg. 1918;68:5–11.CrossRefGoogle Scholar
  5. 5.
    Fleischmann S. Die Ergebnisse der Lumbalpunktion. Dtsch Zeitschr Nervenheilk. 1896;10:342–67.Google Scholar
  6. 6.
    Henle A. Beitrag zur Pathologie und Therapie des Hydrocephalus. Mitt Grenzgeb Med Chir. 1896;1:264–302.Google Scholar
  7. 7.
    Payr E. Elfjähriger Dauererfolg einer Ventrikeldrainage bei Hydrocephalus. Med Klin. 1919;49:1247–51.Google Scholar
  8. 8.
    Ferguson AH. Intraperitoneal diversion of the cerebrospinal fluid in cases of hydrocephalus. N Y Med J. 1898;67:902–9.Google Scholar
  9. 9.
    Anton G, von Bramann FG. Balkenstich bei Hydrocephalien, Tumoren, end bei Epilepsie. Munch Med Wochenschr. 1908;11:1673–5.Google Scholar
  10. 10.
    Kanusch W. Die Behandlung des Hydrocephalus der kleinen Kinder. Arch Klin Chir. 1908;87:709–96.Google Scholar
  11. 11.
    Payr E. Drainage der Hirnventrikel mittels frei transplantierter Blutgefabe; Bemerkungen uber Hydrocephalus. Arch Klin Chir. 1908;87:801–85.Google Scholar
  12. 12.
    Fowler RS. The surgical treatment of internal hydrocephalus. Ann Surg. 1909;49(3):374–81.CrossRefGoogle Scholar
  13. 13.
    Dandy WE. An operative procedure for hydrocephalus. Johns Hopkins Hosp Bull. 1922;33:189–96.Google Scholar
  14. 14.
    Mixter WJ. Ventriculoscopy and punture of the floor of the third ventricle. Boston Med Surg J. 1923;188:277–8.CrossRefGoogle Scholar
  15. 15.
    Schmitt PJ, Jane JA Jr. A lesson in history: the evolution of endoscopic third ventriculostomy. Neurosurg Focus. 2012;33:E11.CrossRefGoogle Scholar
  16. 16.
    Dandy WE. Extirpation of the choroid plexus of the lateral ventricles in communicating hydrocephalus. Ann Surg. 1918;37:569–79.CrossRefGoogle Scholar
  17. 17.
    Grant JA. Victor Darwin Lespinasse: a biographical sketch. Neurosurgery. 1996;39:1232–3.CrossRefGoogle Scholar
  18. 18.
    Nulsen FE, Spitz EB. Treatment of hydrocephalus by direct shunt from ventricle to jugular vein. Surg Forum. 1952;2:399–403.Google Scholar
  19. 19.
    Sandler AL, Sturrock D, Branfield J, et al. Marvelous medicine: the untold story of the Wade-Dahl-Till valve. J Neurosurg Pediatr. 2012;9:482–90.CrossRefGoogle Scholar
  20. 20.
    Boockvar JA, Loudon W, Sutton LN. Development of the Spitz-Holter valve in Philadelphia. J Neurosurg. 2001;95:145–7.CrossRefGoogle Scholar
  21. 21.
    Kalousdian S, Karlan MS, Williams MA. Silicone elastomer cerebrospinal fluid shunt systems. Council on Scientific Affairs, American Medical Association. Neurosurgery. 1998;42:887–92.CrossRefGoogle Scholar
  22. 22.
    James JM, Sainte-Rose C. The shunt book. Cambridge, MA: Blackwell Science; 1995.Google Scholar
  23. 23.
    Harris CA, McAllister JP 2nd. Does drainage hole size influence adhesion on ventricular catheters? Child’s Nerv Syst. 2011;27:1221–32.CrossRefGoogle Scholar
  24. 24.
    Drake JM, Kestle JR, Milner R, et al. Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus. Neurosurgery. 1998;43:294–303; discussion 303–5CrossRefGoogle Scholar
  25. 25.
    Gehlen M, Eklund A, Kurtcuoglu V, Malm J, Schmid Daners M. Comparison of anti-siphon devices-how do they affect CSF dynamics in supine and upright posture? Acta Neurochir. 2017;159:1389–97.CrossRefGoogle Scholar
  26. 26.
    Tuli S, O’Hayon B, Drake J, Clarke M, Kestle J. Change in ventricular size and effect of ventricular catheter placement in pediatric patients with shunted hydrocephalus. Neurosurgery. 1999;45:1329–33; discussion 33–5CrossRefGoogle Scholar
  27. 27.
    Piatt JH Jr. Pumping the shunt revisited. A longitudinal study. Pediatr Neurosurg. 1996;25:73–6; discussion 6–7CrossRefGoogle Scholar
  28. 28.
    Nejat F, El-Khashab M. Why flushing the valve cannot be a reliable method to evaluate the ventriculoperitoneal shunt function? Iran J Pediatr. 2011;21:556.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Cozzens JW, Chandler JP. Increased risk of distal ventriculoperitoneal shunt obstruction associated with slit valves or distal slits in the peritoneal catheter. J Neurosurg. 1997;87:682–6.CrossRefGoogle Scholar
  30. 30.
    Ames RH. Ventriculo-peritoneal shunts in the management of hydrocephalus. J Neurosurg. 1967;27:525–9.CrossRefGoogle Scholar
  31. 31.
    Danan D, Winfree CJ, McKhann GM 2nd. Intra-abdominal vascular injury during trocar-assisted ventriculoperitoneal shunting: case report. Neurosurgery. 2008;63:E613; discussion ECrossRefGoogle Scholar
  32. 32.
    Richardson MD, Handler MH. Minimally invasive technique for insertion of ventriculopleural shunt catheters. J Neurosurg Pediatr. 2013;12:501–4.CrossRefGoogle Scholar
  33. 33.
    Kurschel S, Eder HG, Schleef J. Ventriculopleural shunt: thoracoscopic placement of the distal catheter. Surg Endosc. 2003;17:1850.CrossRefGoogle Scholar
  34. 34.
    Nixon HH. Ventriculo-pleural drainage with a valve. Dev Med Child Neurol. 1962;4:301–2.CrossRefGoogle Scholar
  35. 35.
    Kestle JR, Riva-Cambrin J, Wellons JC 3rd, et al. A standardized protocol to reduce cerebrospinal fluid shunt infection: the Hydrocephalus Clinical Research Network Quality Improvement Initiative. J Neurosurg Pediatr. 2011;8:22–9.CrossRefGoogle Scholar
  36. 36.
    Whitehead WE, Riva-Cambrin J, Wellons JC 3rd, et al. No significant improvement in the rate of accurate ventricular catheter location using ultrasound-guided CSF shunt insertion: a prospective, controlled study by the Hydrocephalus Clinical Research Network. J Neurosurg Pediatr. 2013;12:565–74.CrossRefGoogle Scholar
  37. 37.
    Nesvick CL, Khan NR, Mehta GU, Klimo P Jr. Image guidance in ventricular cerebrospinal fluid shunt catheter placement: a systematic review and meta-analysis. Neurosurgery. 2015;77:321–31; discussion 31CrossRefGoogle Scholar
  38. 38.
    Kestle JR, Drake JM, Cochrane DD, et al. Lack of benefit of endoscopic ventriculoperitoneal shunt insertion: a multicenter randomized trial. J Neurosurg. 2003;98:284–90.CrossRefGoogle Scholar
  39. 39.
    Riva-Cambrin J, Kestle JR, Holubkov R, et al. Risk factors for shunt malfunction in pediatric hydrocephalus: a multicenter prospective cohort study. J Neurosurg Pediatr. 2016;17:382–90.CrossRefGoogle Scholar
  40. 40.
    Klimo P Jr, Van Poppel M, Thompson CJ, et al. Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 6: Preoperative antibiotics for shunt surgery in children with hydrocephalus: a systematic review and meta-analysis. J Neurosurg Pediatr. 2014;14(Suppl 1):44–52.CrossRefGoogle Scholar
  41. 41.
    Albright AL, Haines SJ, Taylor FH. Function of parietal and frontal shunts in childhood hydrocephalus. J Neurosurg. 1988;69:883–6.CrossRefGoogle Scholar
  42. 42.
    Bierbrauer KS, Storrs BB, McLone DG, Tomita T, Dauser R. A prospective, randomized study of shunt function and infections as a function of shunt placement. Pediatr Neurosurg. 1990;16:287–91.CrossRefGoogle Scholar
  43. 43.
    Whitehead WE, Riva-Cambrin J, Kulkarni AV, et al. Ventricular catheter entry site and not catheter tip location predicts shunt survival: a secondary analysis of 3 large pediatric hydrocephalus studies. J Neurosurg Pediatr. 2017;19:157–67.CrossRefGoogle Scholar
  44. 44.
    Whitehead WE. The CSF shunt entry site trial. NLM identifier: NCT02425761. http://www.clinicaltrials.gov/ct2/show/NCT00265317. Accessed 10 May 2018.
  45. 45.
    Lind CR, Tsai AM, Law AJ, Lau H, Muthiah K. Ventricular catheter trajectories from traditional shunt approaches: a morphometric study in adults with hydrocephalus. J Neurosurg. 2008;108:930–3.CrossRefGoogle Scholar
  46. 46.
    Iantosca M, Drake J. Cerebrospinal fluid shunts. In: Albright A, Pollack IF, Adelson PD, editors. Operative techniques in pediatric neurosurgery. New York: Thieme; 2001. p. 3–14.Google Scholar
  47. 47.
    Sekhar LN, Moossy J, Guthkelch AN. Malfunctioning ventriculoperitoneal shunts. Clinical and pathological features. J Neurosurg. 1982;56:411–6.CrossRefGoogle Scholar
  48. 48.
    Harris CA, Resau JH, Hudson EA, et al. Reduction of protein adsorption and macrophage and astrocyte adhesion on ventricular catheters by polyethylene glycol and N-acetyl-L-cysteine. J Biomed Mater Res A. 2011;98:425–33.CrossRefGoogle Scholar
  49. 49.
    Harris CA, McAllister JP 2nd. What we should know about the cellular and tissue response causing catheter obstruction in the treatment of hydrocephalus. Neurosurgery. 2012;70:1589–601; discussion 601–2CrossRefGoogle Scholar
  50. 50.
    Harris CA, Resau JH, Hudson EA, et al. Effects of surface wettability, flow, and protein concentration on macrophage and astrocyte adhesion in an in vitro model of central nervous system catheter obstruction. J Biomed Mater Res A. 2011;97:433–40.CrossRefGoogle Scholar
  51. 51.
    Harris CA, Resau JH, Hudson EA, West RA, Moon C, McAllister JP 2nd. Mechanical contributions to astrocyte adhesion using a novel in vitro model of catheter obstruction. Exp Neurol. 2010;222:204–10.CrossRefGoogle Scholar
  52. 52.
    McGirt MJ, Zaas A, Fuchs HE, George TM, Kaye K, Sexton DJ. Risk factors for pediatric ventriculoperitoneal shunt infection and predictors of infectious pathogens. Clin Infect Dis. 2003;36:858–62.CrossRefGoogle Scholar
  53. 53.
    Lee JK, Seok JY, Lee JH, et al. Incidence and risk factors of ventriculoperitoneal shunt infections in children: a study of 333 consecutive shunts in 6 years. J Korean Med Sci. 2012;27:1563–8.CrossRefGoogle Scholar
  54. 54.
    Simon TD, Butler J, Whitlock KB, et al. Risk factors for first cerebrospinal fluid shunt infection: findings from a multi-center prospective cohort study. J Pediatr. 2014;164:1462–8.e2.CrossRefGoogle Scholar
  55. 55.
    McGirt MJ, Leveque JC, Wellons JC 3rd, et al. Cerebrospinal fluid shunt survival and etiology of failures: a seven-year institutional experience. Pediatr Neurosurg. 2002;36:248–55.CrossRefGoogle Scholar
  56. 56.
    Odio C, McCracken GH Jr, Nelson JD. CSF shunt infections in pediatrics. A seven-year experience. Am J Dis Child. 1984;138:1103–8.CrossRefGoogle Scholar
  57. 57.
    Davis SE, Levy ML, McComb JG, Masri-Lavine L. Does age or other factors influence the incidence of ventriculoperitoneal shunt infections? Pediatr Neurosurg. 1999;30:253–7.CrossRefGoogle Scholar
  58. 58.
    Shahsavaran S, Kermani HR, Keikhosravi E, Nejat F, El Khashab M. Ventriculoperitoneal shunt migration and coiling: a report of two cases. J Pediatr Neurosci. 2012;7:114–6.CrossRefGoogle Scholar
  59. 59.
    Iskandar BJ, Tubbs S, Mapstone TB, Grabb PA, Bartolucci AA, Oakes WJ. Death in shunted hydrocephalic children in the 1990s. Pediatr Neurosurg. 1998;28:173–6.CrossRefGoogle Scholar
  60. 60.
    Sainte-Rose C, Piatt JH, Renier D, et al. Mechanical complications in shunts. Pediatr Neurosurg. 1991;17:2–9.CrossRefGoogle Scholar
  61. 61.
    Tuli S, Tuli J, Drake J, Spears J. Predictors of death in pediatric patients requiring cerebrospinal fluid shunts. J Neurosurg. 2004;100:442–6.PubMedGoogle Scholar
  62. 62.
    Simon TD, Riva-Cambrin J, Srivastava R, et al. Hospital care for children with hydrocephalus in the United States: utilization, charges, comorbidities, and deaths. J Neurosurg Pediatr. 2008;1:131–7.CrossRefGoogle Scholar
  63. 63.
    Kulkarni AV, Riva-Cambrin J, Butler J, et al. Outcomes of CSF shunting in children: comparison of Hydrocephalus Clinical Research Network cohort with historical controls: clinical article. J Neurosurg Pediatr. 2013;12:334–8.CrossRefGoogle Scholar
  64. 64.
    Sainte-Rose C, Hoffman HJ, Hirsch JF. Shunt failure. Concepts Pediatr Neurosurg. 1989;9:7–20.Google Scholar
  65. 65.
    Tuli S, Drake J, Lawless J, Wigg M, Lamberti-Pasculli M. Risk factors for repeated cerebrospinal shunt failures in pediatric patients with hydrocephalus. J Neurosurg. 2000;92:31–8.CrossRefGoogle Scholar
  66. 66.
    Simon TD, Whitlock KB, Riva-Cambrin J, et al. Association of intraventricular hemorrhage secondary to prematurity with cerebrospinal fluid shunt surgery in the first year following initial shunt placement. J Neurosurg Pediatr. 2012;9:54–63.CrossRefGoogle Scholar
  67. 67.
    Piatt JH Jr, Carlson CV. A search for determinants of cerebrospinal fluid shunt survival: retrospective analysis of a 14-year institutional experience. Pediatr Neurosurg. 1993;19:233–41; discussion 42CrossRefGoogle Scholar
  68. 68.
    Sciubba DM, Stuart RM, McGirt MJ, et al. Effect of antibiotic-impregnated shunt catheters in decreasing the incidence of shunt infection in the treatment of hydrocephalus. J Neurosurg. 2005;103:131–6.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Parker SL, McGirt MJ, Murphy JA, Megerian JT, Stout M, Engelhart L. Comparative effectiveness of antibiotic-impregnated shunt catheters in the treatment of adult and pediatric hydrocephalus: analysis of 12,589 consecutive cases from 287 US hospital systems. J Neurosurg. 2015;122:443–8.CrossRefGoogle Scholar
  70. 70.
    Parker SL, McGirt MJ, Murphy JA, Megerian JT, Stout M, Engelhart L. Cost savings associated with antibiotic-impregnated shunt catheters in the treatment of adult and pediatric hydrocephalus. World Neurosurg. 2015;83:382–6.CrossRefGoogle Scholar
  71. 71.
    Jenkinson MD, Gamble C, Hartley JC, et al. The British antibiotic and silver-impregnated catheters for ventriculoperitoneal shunts multi-centre randomised controlled trial (the BASICS trial): study protocol. Trials. 2014;15:4.CrossRefGoogle Scholar
  72. 72.
    Vinchon M, Dhellemmes P. Cerebrospinal fluid shunt infection: risk factors and long-term follow-up. Child’s Nerv Syst. 2006;22:692–7.CrossRefGoogle Scholar
  73. 73.
    Schreffler RT, Schreffler AJ, Wittler RR. Treatment of cerebrospinal fluid shunt infections: a decision analysis. Pediatr Infect Dis J. 2002;21:632–6.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Texas Children’s Hospital, Department of NeurosurgeryHoustonUSA

Personalised recommendations