Advertisement

Hydrocephalus Following Aneurysmal Subarachnoid Hemorrhage

  • David L. DornbosIII
  • Luke G. F. Smith
  • Varun Shah
  • Nicholas Musgrave
  • Patrick P. Youssef
  • Ciarán J. Powers
  • Shahid M. Nimjee
Chapter

Abstract

Acute hydrocephalus following subarachnoid hemorrhage (SAH) is a commonly encountered neurosurgical entity, occurring in up to two-thirds of patients. Clinical symptoms and radiographic findings consistent with hydrocephalus in the acute setting of SAH can typically be temporarily managed with an external ventricular drain (EVD). Numerous risk factors predictive of the need for permanent cerebrospinal fluid (CSF) diversion have been identified, including temporary ventriculostomy, SAH severity, age, and in-hospital complications. Nonetheless, following the initial acute phase of SAH, placement of a ventriculoperitoneal (VP) shunt may be warranted if there is evidence of neurologic or radiographic decline with ventriculostomy challenge and is typically required in 20–50% of patients. Among patients that are successfully discharged without permanent CSF diversion, delayed development of chronic hydrocephalus occurs in 5% of patients and close follow-up for the initial year is recommended. Despite the severe nature of posthemorrhagic hydrocephalus, proper surveillance and management of this complication of SAH can ameliorate potential neurologic sequelae.

Keywords

Subarachnoid hemorrhage Hydrocephalus Ventriculoperitoneal shunt Ventriculostomy Aneurysmal subarachnoid hemorrhage 

References

  1. 1.
    Brinker T, Seifert V, Stolke D. Acute changes in the dynamics of the cerebrospinal fluid system during experimental subarachnoid hemorrhage. Neurosurgery. 1990;27(3):369–72.CrossRefGoogle Scholar
  2. 2.
    Heros RC. Acute hydrocephalus after subarachnoid hemorrhage. Stroke. 1989;20(6):715–7.CrossRefGoogle Scholar
  3. 3.
    Graff-Radford NR, Torner J, Adams HP Jr, Kassell NF. Factors associated with hydrocephalus after subarachnoid hemorrhage. A report of the Cooperative Aneurysm Study. Arch Neurol. 1989;46(7):744–52.CrossRefGoogle Scholar
  4. 4.
    Sheehan JP, Polin RS, Sheehan JM, Baskaya MK, Kassell NF. Factors associated with hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurgery. 1999;45(5):1120–7; discussion 1127–1128CrossRefGoogle Scholar
  5. 5.
    Hutter BO, Kreitschmann-Andermahr I, Gilsbach JM. Cognitive deficits in the acute stage after subarachnoid hemorrhage. Neurosurgery. 1998;43(5):1054–65.CrossRefGoogle Scholar
  6. 6.
    Germanwala AV, Huang J, Tamargo RJ. Hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurg Clin N Am. 2010;21(2):263–70.CrossRefGoogle Scholar
  7. 7.
    Wilson CD, Safavi-Abbasi S, Sun H, et al. Meta-analysis and systematic review of risk factors for shunt dependency after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2017;126(2):586–95.CrossRefGoogle Scholar
  8. 8.
    Dorai Z, Hynan LS, Kopitnik TA, Samson D. Factors related to hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2003;52(4):763–9; discussion 769–771CrossRefGoogle Scholar
  9. 9.
    Wang YM, Lin YJ, Chuang MJ, et al. Predictors and outcomes of shunt-dependent hydrocephalus in patients with aneurysmal sub-arachnoid hemorrhage. BMC Surg. 2012;12:12.CrossRefGoogle Scholar
  10. 10.
    Yolas C, Ozdemir NG, Kanat A, et al. Uncovering a new cause of obstructive hydrocephalus following subarachnoid hemorrhage: choroidal artery vasospasm-related ependymal cell degeneration and aqueductal stenosis-first experimental study. World Neurosurg. 2016;90:484–91.CrossRefGoogle Scholar
  11. 11.
    Hua C, Zhao G. Biomarkers in adult posthemorrhagic hydrocephalus. Int J Stroke. 2017;12(6):574–9.CrossRefGoogle Scholar
  12. 12.
    Varelas P, Helms A, Sinson G, Spanaki M, Hacein-Bey L. Clipping or coiling of ruptured cerebral aneurysms and shunt-dependent hydrocephalus. Neurocrit Care. 2006;4(3):223–8.CrossRefGoogle Scholar
  13. 13.
    Shah AH, Komotar RJ. Pathophysiology of acute hydrocephalus after subarachnoid hemorrhage. World Neurosurg. 2013;80(3–4):304–6.CrossRefGoogle Scholar
  14. 14.
    Wilson TJ, Stetler WR Jr, Davis MC, et al. Intraventricular hemorrhage is associated with early hydrocephalus, symptomatic vasospasm, and poor outcome in aneurysmal subarachnoid hemorrhage. J Neurol Surg A Cent Eur Neurosurg. 2015;76(2):126–32.PubMedGoogle Scholar
  15. 15.
    Chen S, Luo J, Reis C, Manaenko A, Zhang J. Hydrocephalus after Subarachnoid Hemorrhage: pathophysiology, Diagnosis, and Treatment. Biomed Res Int. 2017;2017:8584753.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Saliou G, Paradot G, Gondry C, et al. A phase-contrast MRI study of acute and chronic hydrodynamic alterations after hydrocephalus induced by subarachnoid hemorrhage. J Neuroimaging. 2012;22(4):343–50.CrossRefGoogle Scholar
  17. 17.
    Chen S, Yang Q, Chen G, Zhang JH. An update on inflammation in the acute phase of intracerebral hemorrhage. Transl Stroke Res. 2015;6(1):4–8.CrossRefGoogle Scholar
  18. 18.
    Kanat A, Turkmenoglu O, Aydin MD, et al. Toward changing of the pathophysiologic basis of acute hydrocephalus after subarachnoid hemorrhage: a preliminary experimental study. World Neurosurg. 2013;80(3–4):390–5.CrossRefGoogle Scholar
  19. 19.
    Tan Q, Chen Q, Feng Z, et al. Cannabinoid receptor 2 activation restricts fibrosis and alleviates hydrocephalus after intraventricular hemorrhage. Brain Res. 2017;1654(Pt A):24–33.CrossRefGoogle Scholar
  20. 20.
    Yan H, Chen Y, Li L, et al. Decorin alleviated chronic hydrocephalus via inhibiting TGF-beta1/Smad/CTGF pathway after subarachnoid hemorrhage in rats. Brain Res. 2016;1630:241–53.CrossRefGoogle Scholar
  21. 21.
    Gram M, Sveinsdottir S, Ruscher K, et al. Hemoglobin induces inflammation after preterm intraventricular hemorrhage by methemoglobin formation. J Neuroinflammation. 2013;10:100.CrossRefGoogle Scholar
  22. 22.
    Gram M, Sveinsdottir S, Cinthio M, et al. Extracellular hemoglobin – mediator of inflammation and cell death in the choroid plexus following preterm intraventricular hemorrhage. J Neuroinflammation. 2014;11:200.CrossRefGoogle Scholar
  23. 23.
    Garton T, Keep RF, Wilkinson DA, et al. Intraventricular Hemorrhage: the Role of Blood Components in Secondary Injury and Hydrocephalus. Transl Stroke Res. 2016;7(6):447–51.CrossRefGoogle Scholar
  24. 24.
    Bloch O, Auguste KI, Manley GT, Verkman AS. Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab. 2006;26(12):1527–37.CrossRefGoogle Scholar
  25. 25.
    Gao C, Du H, Hua Y, Keep RF, Strahle J, Xi G. Role of red blood cell lysis and iron in hydrocephalus after intraventricular hemorrhage. J Cereb Blood Flow Metab. 2014;34(6):1070–5.CrossRefGoogle Scholar
  26. 26.
    Suzuki H, Muramatsu M, Tanaka K, Fujiwara H, Kojima T, Taki W. Cerebrospinal fluid ferritin in chronic hydrocephalus after aneurysmal subarachnoid hemorrhage. J Neurol. 2006;253(9):1170–6.CrossRefGoogle Scholar
  27. 27.
    Daniere F, Gascou G, Menjot de Champfleur N, et al. Complications and follow up of subarachnoid hemorrhages. Diagn Interv Imaging. 2015;96(7–8):677–86.CrossRefGoogle Scholar
  28. 28.
    van Gijn J, Hijdra A, Wijdicks EF, Vermeulen M, van Crevel H. Acute hydrocephalus after aneurysmal subarachnoid hemorrhage. J Neurosurg. 1985;63(3):355–62.CrossRefGoogle Scholar
  29. 29.
    Knol DS, van Gijn J, Kruitwagen CL, Rinkel GJ. Size of third and fourth ventricle in obstructive and communicating acute hydrocephalus after aneurysmal subarachnoid hemorrhage. J Neurol. 2011;258(1):44–9.CrossRefGoogle Scholar
  30. 30.
    Morgenstern LB, Hemphill JC 3rd, Anderson C, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2010;41(9):2108–29.CrossRefGoogle Scholar
  31. 31.
    Poon WS, Ng S, Wai S. CSF antibiotic prophylaxis for neurosurgical patients with ventriculostomy: a randomised study. Acta Neurochir Suppl. 1998;71:146–8.PubMedGoogle Scholar
  32. 32.
    Blomstedt GC. Results of trimethoprim-sulfamethoxazole prophylaxis in ventriculostomy and shunting procedures. A double-blind randomized trial. J Neurosurg. 1985;62(5):694–7.CrossRefGoogle Scholar
  33. 33.
    Alleyne CH Jr, Hassan M, Zabramski JM. The efficacy and cost of prophylactic and perioprocedural antibiotics in patients with external ventricular drains. Neurosurgery. 2000;47(5):1124–7; discussion 1127–1129CrossRefGoogle Scholar
  34. 34.
    Sonabend AM, Korenfeld Y, Crisman C, Badjatia N, Mayer SA, Connolly ES Jr. Prevention of ventriculostomy-related infections with prophylactic antibiotics and antibiotic-coated external ventricular drains: a systematic review. Neurosurgery. 2011;68(4):996–1005.CrossRefGoogle Scholar
  35. 35.
    Kubilay Z, Amini S, Fauerbach LL, Archibald L, Friedman WA, Layon AJ. Decreasing ventricular infections through the use of a ventriculostomy placement bundle: experience at a single institution. J Neurosurg. 2013;118(3):514–20.CrossRefGoogle Scholar
  36. 36.
    Scheithauer S, Burgel U, Ryang YM, et al. Prospective surveillance of drain associated meningitis/ventriculitis in a neurosurgery and neurological intensive care unit. J Neurol Neurosurg Psychiatry. 2009;80(12):1381–5.CrossRefGoogle Scholar
  37. 37.
    Komotar RJ, Olivi A, Rigamonti D, Tamargo RJ. Microsurgical fenestration of the lamina terminalis reduces the incidence of shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2002;51(6):1403–12; discussion 1412–1403CrossRefGoogle Scholar
  38. 38.
    Tomasello F, d’Avella D, de Divitiis O. Does lamina terminalis fenestration reduce the incidence of chronic hydrocephalus after subarachnoid hemorrhage? Neurosurgery. 1999;45(4):827–31; discussion 831–822CrossRefGoogle Scholar
  39. 39.
    Komotar RJ, Hahn DK, Kim GH, et al. Efficacy of lamina terminalis fenestration in reducing shunt-dependent hydrocephalus following aneurysmal subarachnoid hemorrhage: a systematic review. Clinical article. J Neurosurg. 2009;111(1):147–54.CrossRefGoogle Scholar
  40. 40.
    Vale FL, Bradley EL, Fisher WS 3rd. The relationship of subarachnoid hemorrhage and the need for postoperative shunting. J Neurosurg. 1997;86(3):462–6.CrossRefGoogle Scholar
  41. 41.
    Vermeij FH, Hasan D, Vermeulen M, Tanghe HL, van Gijn J. Predictive factors for deterioration from hydrocephalus after subarachnoid hemorrhage. Neurology. 1994;44(10):1851–5.CrossRefGoogle Scholar
  42. 42.
    O’Kelly CJ, Kulkarni AV, Austin PC, Urbach D, Wallace MC. Shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage: incidence, predictors, and revision rates. Clinical article. J Neurosurg. 2009;111(5):1029–35.CrossRefGoogle Scholar
  43. 43.
    Erixon HO, Sorteberg A, Sorteberg W, Eide PK. Predictors of shunt dependency after aneurysmal subarachnoid hemorrhage: results of a single-center clinical trial. Acta Neurochir. 2014;156(11):2059–69.CrossRefGoogle Scholar
  44. 44.
    Rincon F, Gordon E, Starke RM, et al. Predictors of long-term shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage. Clinical article. J Neurosurg. 2010;113(4):774–80.CrossRefGoogle Scholar
  45. 45.
    Dupont S, Rabinstein AA. Extent of acute hydrocephalus after subarachnoid hemorrhage as a risk factor for poor functional outcome. Neurol Res. 2013;35(2):107–10.CrossRefGoogle Scholar
  46. 46.
    Motiei-Langroudi R, Adeeb N, Foreman PM, et al. Predictors of Shunt Insertion in Aneurysmal Subarachnoid Hemorrhage. World Neurosurg. 2017;98:421–6.CrossRefGoogle Scholar
  47. 47.
    Gruber A, Reinprecht A, Bavinzski G, Czech T, Richling B. Chronic shunt-dependent hydrocephalus after early surgical and early endovascular treatment of ruptured intracranial aneurysms. Neurosurgery. 1999;44(3):503–9; discussion 509–512CrossRefGoogle Scholar
  48. 48.
    Kwon JH, Sung SK, Song YJ, Choi HJ, Huh JT, Kim HD. Predisposing factors related to shunt-dependent chronic hydrocephalus after aneurysmal subarachnoid hemorrhage. J Korean Neurosurg Soc. 2008;43(4):177–81.CrossRefGoogle Scholar
  49. 49.
    Howington JU, Kutz SC, Wilding GE, Awasthi D. Cocaine use as a predictor of outcome in aneurysmal subarachnoid hemorrhage. J Neurosurg. 2003;99(2):271–5.CrossRefGoogle Scholar
  50. 50.
    Chang TR, Kowalski RG, Carhuapoma JR, Tamargo RJ, Naval NS. Cocaine use as an independent predictor of seizures after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2016;124(3):730–5.CrossRefGoogle Scholar
  51. 51.
    Walcott BP, Iorgulescu JB, Stapleton CJ, Kamel H. Incidence, timing, and predictors of delayed shunting for hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2015;23(1):54–8.CrossRefGoogle Scholar
  52. 52.
    Rammos S, Klopfenstein J, Augspurger L, et al. Conversion of external ventricular drains to ventriculoperitoneal shunts after aneurysmal subarachnoid hemorrhage: effects of site and protein/red blood cell counts on shunt infection and malfunction. J Neurosurg. 2008;109(6):1001–4.CrossRefGoogle Scholar
  53. 53.
    Reddy GK. Ventriculoperitoneal shunt surgery and the incidence of shunt revision in adult patients with hemorrhage-related hydrocephalus. Clin Neurol Neurosurg. 2012;114(9):1211–6.CrossRefGoogle Scholar
  54. 54.
    Yoshioka H, Inagawa T, Tokuda Y, Inokuchi F. Chronic hydrocephalus in elderly patients following subarachnoid hemorrhage. Surg Neurol. 2000;53(2):119–24; discussion 124–115CrossRefGoogle Scholar
  55. 55.
    Spetzler RF, McDougall CG, Albuquerque FC, et al. The Barrow Ruptured Aneurysm Trial: 3-year results. J Neurosurg. 2013;119(1):146–57.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David L. DornbosIII
    • 1
  • Luke G. F. Smith
    • 1
  • Varun Shah
    • 2
  • Nicholas Musgrave
    • 2
  • Patrick P. Youssef
    • 1
  • Ciarán J. Powers
    • 1
  • Shahid M. Nimjee
    • 1
  1. 1.Department of Neurological SurgeryThe Ohio State University Wexner Medical CenterColumbusUSA
  2. 2.The Ohio State University Medical CenterColumbusUSA

Personalised recommendations