Advertisement

Epoxide Hydrolase for the Synthesis of Chiral Drugs

  • Priya Saini
  • Dipti SareenEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 22)

Abstract

Since the racemic enantiomers have different physiologic effects, there are strong recommendations by US FDA for the production of chiral drugs, and since then the chiral drug industry has been growing with 15% growth rate projected for the period 2010–2022. For the synthesis of chiral drugs, enantiopure epoxides and diols serve as important precursors. Though several chemo-catalytic strategies have been employed for their production, nowadays due to a rising environmental concern, there is an upsurge in the development of greener technologies for the production of chiral drugs. Thus, biocatalysis appears as a green alternative.

Here, we have reviewed several biocatalysts for the synthesis of enantiopure epoxides and diols. Among them, epoxide hydrolases from microbes have emerged as one of the key catalysts as they are ubiquitously present, do not require any additional nucleophile or cofactors, are stable and have broad substrate spectra. To identify novel epoxide hydrolases, several screening strategies like enrichment and metagenome screening, 16SrRNA sequencing and genome mining have been adopted. With the expansion of publically available genome database, genome mining provides a quicker, cheaper and easier method for epoxide hydrolases identification.

We have also reviewed the assays available, in detail here, to establish the functional state of epoxide hydrolases. There are spectrophotometric methods like 4-(p-nitrobenzyl) pyridine assay, adrenaline assay, sodium-metaperiodate assay, p-nitrostyrene oxide assay and fluorophotometric assay along with the chromatographic techniques like gas chromatography and high-performance liquid chromatography. The spectrophotometric methods have some limitations as 4-(p-nitrobenzyl) pyridine assay is not very accurate at low epoxide conversion ratio; only aromatic epoxide can be detected in sodium-metaperiodate, while fluorogenic assay requires additional screening step with industrially important epoxides. The chromatographic method like gas chromatography involves extra step of derivatization of diols before analysis; compounds should be volatile and must not degrade when heated at high temperature, whereas in high-performance liquid chromatography, detectors are non-destructive, and samples do not require any further treatment before analysis. All the studies reviewed here establish epoxide hydrolases as vital green biocatalysts, for the production of chiral pharmaceutical drug intermediates.

Keywords

Epoxide hydrolases Enantioselective Chiral drugs Biocatalysts Epoxides Diols Kinetic resolution Green technology 

Notes

Acknowledgements

This work was financially supported by the Department of Biotechnology (DBT) via Grant No. BT/PR/4694/PID/6/633/2012, Government of India, New Delhi. PS gratefully acknowledges DBT for the SRF. The financial assistance received from the Department of Science and Technology-Promotion of University Research and Scientific Excellence (DST-PURSE) and University Grants Commission-Special Assistance Programme (UGC-SAP) (DRS Phase-I) is duly acknowledged.

References

  1. Alcalde M, Farinas ET, Arnold FH (2004) Colorimetric high-throughput assay for alkene epoxidation catalyzed by cytochrome P450 BM-3 variant 139-3. J Biomol Screen 9:141–146.  https://doi.org/10.1177/1087057103261913 CrossRefGoogle Scholar
  2. Allen RH, Jakoby WB (1969) Tartaric acid metabolism. J Biol Chem 244:2078–2084Google Scholar
  3. Amrein BA, Bauer P, Duarte F et al (2015) Expanding the catalytic triad in epoxide hydrolases and related enzymes. ACS Catal 5:5702–5713.  https://doi.org/10.1021/acscatal.5b01639 CrossRefGoogle Scholar
  4. Andberg M, Hamberg M, Haeggstrom JZ (1999) Evidence for a carbocation intermediate in the enzymatic transformation of leukotriene A4 to leukotriene B4. Adv Exp Med Biol 469:319–325.  https://doi.org/10.1007/978-1-4615-4793-8_47 CrossRefGoogle Scholar
  5. Arand M, Knehr M, Thomas H et al (1991) An impaired peroxisomal targeting sequence leading to an unusual bicompartmental distribution of cytosolic epoxide hydrolase. FEBS Lett 294:19–22.  https://doi.org/10.1016/0014-5793(91)81333-4 CrossRefGoogle Scholar
  6. Arand M, Grant DF, Beetham JK et al (1994) Sequence similarity of mammalian epoxide hydrolases to the bacterial haloalkane dehalogenase and other related proteins. Implication for the potential catalytic mechanism of enzymatic epoxide hydrolysis. FEBS Lett 338:251–256.  https://doi.org/10.1016/0014-5793(94)80278-5 CrossRefGoogle Scholar
  7. Arand M, Wagner H, Oesch F (1996) Asp333, Asp495, and His523 form the catalytic triad of rat soluble epoxide hydrolase. J Biol Chem 271:4223–4229.  https://doi.org/10.1074/jbc.271.8.4223 CrossRefGoogle Scholar
  8. Arand M, Hemmer H, Dürk H et al (1999) Cloning and molecular characterization of a soluble epoxide hydrolase from Aspergillus niger that is related to mammalian microsomal epoxide hydrolase. Biochem J 344:273–280.  https://doi.org/10.1042/bj3440273 CrossRefGoogle Scholar
  9. Arand M, Hallberg BM, Zou J et al (2003) Structure of Rhodococcus erythropolis limonene-1, 2-epoxide hydrolase reveals a novel active site. EMBO J 22:2583–2592.  https://doi.org/10.1093/emboj/cdg275 CrossRefGoogle Scholar
  10. Arand M, Cronin A, Adamska M, Oesch F (2005) Epoxide hydrolases: structure, function, mechanism, and assay. Methods Enzym 400:569–588.  https://doi.org/10.1016/S0076-6879(05)00032-7 CrossRefGoogle Scholar
  11. Archelas A, Furstoss R (1998) Epoxide hydrolases: new tools for the synthesis of fine organic chemicals. Trends Biotechnol 16:108–116.  https://doi.org/10.1016/S0167-7799(97)01161-X CrossRefGoogle Scholar
  12. Archelas A, Furstoss R (2001) Synthetic applications of epoxide hydrolases. Curr Opin Chem Biol 5:112–119.  https://doi.org/10.1016/S1367-5931(00)00179-4 CrossRefGoogle Scholar
  13. Archer IVJ (1997) Epoxide hydrolases as asymmetric catalysts. Tetrahedron 53:15617–15662.  https://doi.org/10.1016/S0040-4020(97)00843-0 CrossRefGoogle Scholar
  14. Archer IVJ, Leak DJ, Widdowson DA (1996) Chemoenzymic resolution and deracemisation of (±)-1-methyl-1,2-epoxycyclohexane: the synthesis of (1-S, 2-S)-1-methylcyclohexane-1,2-diol. Tetrahedron Lett 37:8819–8822.  https://doi.org/10.1016/S0040-4039(96)01998-3 CrossRefGoogle Scholar
  15. Argiriadi MA, Morisseau C, Hammock BD, Christianson DW (1999) Detoxification of environmental mutagens and carcinogens: structure, mechanism, and evolution of liver epoxide hydrolase. Proc Natl Acad Sci USA 96:10637–10642.  https://doi.org/10.1073/pnas.96.19.10637 CrossRefGoogle Scholar
  16. Argiriadi MA, Morisseau C, Goodrow MH et al (2000) Binding of alkylurea inhibitors to epoxide hydrolase implicates active site tyrosines in substrate activation. J Biol Chem 275:15265–15270.  https://doi.org/10.1074/jbc.M000278200 CrossRefGoogle Scholar
  17. Astrom A, Eriksson M, Eriksson LC et al (1986) Subcellular and organ distribution of cholesterol epoxide hydrolase in the rat. Biochim Biophys Acta 882:359–366.  https://doi.org/10.1016/0304-4165(86)90259-X CrossRefGoogle Scholar
  18. Badalassi F, Wahler D, Klein G et al (2000) A versatile periodate-coupled fluorogenic assay for hydrolytic enzymes. Angew Chem 112:4233–4236.  https://doi.org/10.1002/1521-3773(20001117)39:22<4067::AID-ANIE4067>3.0.CO;2-9 CrossRefGoogle Scholar
  19. Bala N, Chimni SS, Saini HS, Chadha BS (2010) Bacillus alcalophilus MTCC10234 catalyzed enantioselective kinetic resolution of aryl glycidyl ethers. J Mol Catal B Enzym 63:128–134.  https://doi.org/10.1016/j.molcatb.2009.12.019 CrossRefGoogle Scholar
  20. Bala N, Kaur K, Chimni SS et al (2011) Bioresolution of benzyl glycidyl ether using whole cells of Bacillus alcalophilus. J Basic Microbiol 52:383–389.  https://doi.org/10.1002/jobm.201100204 CrossRefGoogle Scholar
  21. Barbirato F, Verdoes JC, de Bont J, van der Werf M (1998) The Rhodococcus erythropolis DCL14 limonene-1,2-epoxide hydrolase gene encodes an enzyme belonging to a novel class of epoxide hydrolases. FEBS Lett 438:293–296.  https://doi.org/10.1016/S0014-5793(98)01322-2 CrossRefGoogle Scholar
  22. Barth S, Fischer M, Schmid RD, Pleiss J (2004) Sequence and structure of epoxide hydrolases: a systematic analysis. Proteins 55:846–855.  https://doi.org/10.1002/prot.20013 CrossRefGoogle Scholar
  23. Baxter SW, Choong DYH, Campbell IG (2002) Microsomal epoxide hydrolase polymorphism and susceptibility to ovarian cancer. Cancer Lett 177:75–81.  https://doi.org/10.1016/S0304-3835(01)00782-0 CrossRefGoogle Scholar
  24. Beetham JK, Grant D, Arand M et al (1995) Gene evolution of epoxide hydrolases and recommended nomenclature. DNA Cell Biol 14:61–71.  https://doi.org/10.1089/dna.1995.14.61 CrossRefGoogle Scholar
  25. Bellevik S, Zhang J, Meijer J (2002) Brassica napus soluble epoxide hydrolase (BNSEH1). Eur J Biochem 269:5295–5302.  https://doi.org/10.1046/j.1432-1033.2002.03247.x CrossRefGoogle Scholar
  26. Beloti LL, Costa BZ, Toledo MA et al (2013) A novel and enantioselective epoxide hydrolase from Aspergillus brasiliensis CCT 1435: purification and characterization. Protein Expr Purif 91:175–183.  https://doi.org/10.1016/j.pep.2013.08.001 CrossRefGoogle Scholar
  27. Bhatnagar T, Manoj KM, Baratti JC (2001) A spectrophotometric method to assay epoxide hydrolase activity. J Biochem Biophys Methods 50:1–13.  https://doi.org/10.1016/S0165-022X(01)00162-2 CrossRefGoogle Scholar
  28. Bicalho B, Chen LS, Grognux J et al (2004) Studies on whole cell fluorescence-based screening for epoxide hydrolases and baeyer-villiger monoxygenases. J Braz Chem Soc 15:911–916.  https://doi.org/10.1590/S0103-50532004000600019 CrossRefGoogle Scholar
  29. Biswal BK, Morisseau C, Garen G et al (2008) The molecular structure of epoxide hydrolase B from Mycobacterium tuberculosis and its complex with a urea-based inhibitor. J Mol Biol 381:897–912.  https://doi.org/10.1016/j.jmb.2008.06.030 CrossRefGoogle Scholar
  30. Blee E (2002) Impact of phyto-oxylipins in plant defense. Trends Plant Sci 7:315–322.  https://doi.org/10.1016/S1360-1385(02)02290-2 CrossRefGoogle Scholar
  31. Blee E, Schuber F (1992) Regio- and enantioselectivity of soybean fatty acid epoxide hydrolase. J Biol Chem 267:11881–11887Google Scholar
  32. Bordes I, Recatalá J, Świderek K, Moliner V (2015) Is promiscuous CALB a good scaffold for designing new epoxidases. Molecules 20:17789–17806.  https://doi.org/10.3390/molecules201017789 CrossRefGoogle Scholar
  33. Bornscheuer UT (ed) (2000) Front matter, in enzymes in lipid modification, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG.  https://doi.org/10.1002/3527606033.fmatter
  34. Bornscheuer UT, Kazlauskas RJ (2006) Phospholipases: sections 7.1–7.2. in: Bornscheuer UT, Kazlauskas RJ (eds) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. In: Hydrolases in organic synthesis. pp 211–214.  https://doi.org/10.1002/3527607544.ch7
  35. Botes AL, Mitra RK (2006) Epoxide hydrolases: a biocatalytic technology platform for the production of chiral pharmaceutical intermediates. Innov Pharm Technol 21:86–89Google Scholar
  36. Botes AL, Steenkamp JA, Letloenyane MZ, van Dyk MS (1998) Epoxide hydrolase activity of Chryseomonas luteola for the asymmetric hydrolysis of aliphatic mono-substituted epoxides. Biotechnol Lett 20:427–430.  https://doi.org/10.1023/A:1005347901809 CrossRefGoogle Scholar
  37. Botes AL, Weijers CAGM, Botes PJ, van Dyk MS (1999) Enantioselectivities of yeast epoxide hydrolases for 1,2-epoxides. Tetrahedron: Asymmetry 10:3327–3336.  https://doi.org/10.1016/S0957-4166(99)00355-9 CrossRefGoogle Scholar
  38. Botes AL, Lotter J, Rhode OHJ, Botha A (2005) Interspecies differences in the enantioselectivity of epoxide hydrolases in Cryptococcus laurentii (Kufferath) C.E. Skinner and Cryptococcus podzolicus (Bab’jeva & Reshetova) Golubev. Syst Appl Microbiol 28:27–33.  https://doi.org/10.1016/j.syapm.2004.10.003 CrossRefGoogle Scholar
  39. Breuer M, Ditrich K, Habicher T et al (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed 43:788–824.  https://doi.org/10.1002/anie.200300599 CrossRefGoogle Scholar
  40. Cagnon JR, Porto ALM, Marsaiolil AJ et al (1999) First evaluation of the Brazilian microorganisms biocatalytic potential. Chemosphere 38:2237–2242.  https://doi.org/10.1016/S0045-6535(98)00442-1 CrossRefGoogle Scholar
  41. Cao L, Lee J, Chen W, Wood TK (2006) Enantioconvergent production of (R)-1-phenyl-1,2-ethanediol from styrene oxide by combining the Solanum tuberosum and an evolved Agrobacterium radiobacter AD1 epoxide hydrolases. Biotechnol Bioeng 94:522–529.  https://doi.org/10.1002/bit.20860 CrossRefGoogle Scholar
  42. Carlin DA, Bertolani SJ, Siegel JB (2015) Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene. Chem Commun 51:2283–2285.  https://doi.org/10.1039/C4CC08802F CrossRefGoogle Scholar
  43. Cashman JR (2008) Role of flavin-containing monooxygenases in drug metabolism and development. Expert Opin Drug Metab Toxicol 4:1507–1521.  https://doi.org/10.1517/17425250802522188 CrossRefGoogle Scholar
  44. Cedrone F, Bhatnagar T, Baratti JC (2005) Colorimetric assays for quantitative analysis and screening of epoxide hydrolase activity. Biotechnol Lett 27:1921–1927.  https://doi.org/10.1007/s10529-005-3904-1 CrossRefGoogle Scholar
  45. Chang D, Wang Z, Heringa MF et al (2003) Highly enantioselective hydrolysis of alicyclic meso-epoxides with a bacterial epoxide hydrolase from Sphingomonas sp. HXN-200: simple syntheses of alicyclic vicinal trans-diols meso-epoxide with a bacterial epoxide hydrolase. Chem Commun 21:960–961.  https://doi.org/10.1039/B300435J CrossRefGoogle Scholar
  46. Chartrain MM, Senanayake CH, Rosazza JPN, Zhang J (1998) Resolution of racemic indene oxide to yield (1S,2R)-indene oxide using Diplodia gossipina. Patent Publication No. US 5,849,568 A. 15 December, 1998. 1–13Google Scholar
  47. Chen L, Shen H, Wei C, Zhu Q (2013) Bioresolution of (R)-glycidyl azide by Aspergillus niger ZJUTZQ208: a new and concise synthon for chiral vicinal amino alcohols. Appl Microbiol Biotechnol 97:2609–2616.  https://doi.org/10.1007/s00253-012-4382-8 CrossRefGoogle Scholar
  48. Choi WJ (2009) Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution. Appl Microbiol Biotechnol 84:239–247.  https://doi.org/10.1007/s00253-009-2110-9 CrossRefGoogle Scholar
  49. Choi WJ, Choi CY (2005) Production of chiral epoxides: epoxide hydrolase-catalyzed enantioselective hydrolysis. Biotechnol Bioprocess Eng 10:167–179.  https://doi.org/10.1007/BF02932009 CrossRefGoogle Scholar
  50. Choi WJ, Puah SM, Tan LL, Ng SS (2008) Production of (R)-ethyl-3,4-epoxybutyrate by newly isolated Acinetobacter baumannii containing epoxide hydrolase. Appl Microbiol Biotechnol 79:61–67.  https://doi.org/10.1007/s00253-008-1405-6 CrossRefGoogle Scholar
  51. Cleij M, Archelas A, Furstoss R (1999) Microbiological transformations 43. Epoxide hydrolases as tools for the synthesis of enantiopure-methylstyrene oxides: a new and efficient synthesis of (S)-Ibuprofen. J Org Chem 64:5029–5035.  https://doi.org/10.1021/jo982101 CrossRefGoogle Scholar
  52. Clerici A, Pastori N, Porta O (2002) Facile reduction of aromatic aldehydes, ketones, diketones and oxo aldehydes to alcohols by an aqueous TiCl3/NH3 system: selectivity and scope. Eur J Org Chem 2002:3326–3335.  https://doi.org/10.1002/1099-0690(200210)2002:19<3326::AID-EJOC3326>3.0.CO;2-V CrossRefGoogle Scholar
  53. Clouthier CM, Pelletier JN (2012) Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis. Chem Soc Rev 41:1585–1605.  https://doi.org/10.1039/c2cs15286j CrossRefGoogle Scholar
  54. Coller JK, Fritz P, Zanger UM et al (2001) Distribution of microsomal epoxide hydrolase in humans: an immunohistochemical study in normal tissues, and benign and malignant tumours. Histochem J 33:329–336.  https://doi.org/10.1023/A:1012414806166 CrossRefGoogle Scholar
  55. Cronin A, Decker M, Arand M (2011) Mammalian soluble epoxide hydrolase is identical to liver hepoxilin hydrolase. J Lipid Res 52:712–719.  https://doi.org/10.1194/jlr.M009639 CrossRefGoogle Scholar
  56. Cziczo DJ (2004) Chromatography Lecture 4. In: Mass spectrometery & chromatography. CIRES and NOAA. Available via CU-Boulder. http://www.colorado.edu/chemistry/chem5181/Lectures/C4_HPLC.pdf. Accessed 26 June 2017.
  57. da Cruz GF, Angolini CFF, de Oliveira LG et al (2010) Searching for monooxygenases and hydrolases in bacteria from an extreme environment. Appl Microbiol Biotechnol 87:319–329.  https://doi.org/10.1007/s00253-010-2485-7 CrossRefGoogle Scholar
  58. Dagher F, Deziel E, Lirette P et al (1997) Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils. Can J Microbiol 43:368–377.  https://doi.org/10.1139/m97-051 CrossRefGoogle Scholar
  59. de Medina P, Paillassea MR, Segalaa G et al (2010) Identification and pharmacological characterization of cholesterol-5,6-epoxide hydrolase as a target for tamoxifen and AEBS ligands. Proc Natl Acad Sci USA 107:13520–13525.  https://doi.org/10.1073/pnas.1002922107 CrossRefGoogle Scholar
  60. de Vries EJ, Janssen DB (2003) Biocatalytic conversion of epoxides. Curr Opin Biotechnol 14:414–420.  https://doi.org/10.1016/S0958-1669(03)00102-2 CrossRefGoogle Scholar
  61. Debernard S, Morisseau C, Severson TF et al (1998) Expression and characterization of the recombinant juvenile hormone epoxide hydrolase (JHEH) from Manduca sexta. Insect Biochem Mol Biol 28:409–419.  https://doi.org/10.1016/S0965-1748(98)00014-9 CrossRefGoogle Scholar
  62. Decker M, Arand M, Cronin A (2009) Mammalian epoxide hydrolases in xenobiotic metabolism and signalling. Arch Toxicol 83:297–318.  https://doi.org/10.1007/s00204-009-0416-0 CrossRefGoogle Scholar
  63. Dietze EC, Kuwano E, Hammock BD (1994) Spectrophotometric substrates for cytosolic epoxide hydrolase. Anal Biochem 216:176–187.  https://doi.org/10.1006/abio.1994.1023 CrossRefGoogle Scholar
  64. Doderer K, Schmid RD (2004) Fluorometric assay for determining epoxide hydrolase activity. Biotechnol Lett 26:835–839.  https://doi.org/10.1023/B:BILE.0000025887.36874.33 CrossRefGoogle Scholar
  65. Doderer K, Lutz-Wahl S, Hauer B, Schmid RD (2003) Spectrophotometric assay for epoxide hydrolase activity toward any epoxide. Anal Biochem 321:131–134.  https://doi.org/10.1016/S0003-2697(03)00399-3 CrossRefGoogle Scholar
  66. Dong JJ, Ferna E, Renirie R et al (2017) Halofunctionalization of alkenes by vanadium chloroperoxidase from Curvularia inaequalis. ChemComm 53:6207–6210.  https://doi.org/10.1039/C7CC03368K CrossRefGoogle Scholar
  67. Duarah A, Goswami A, Bora TC et al (2013) Enantioconvergent biohydrolysis of racemic styrene oxide to (R)-phenyl-1,2-ethanediol by a newly isolated filamentous fungus Aspergillus tubingensis TF1. Appl Biochem Biotechnol 170:1965–1973.  https://doi.org/10.1007/s12010-013-0324-x CrossRefGoogle Scholar
  68. Eisendle M, Oberegger H, Buttinger R et al (2004) Biosynthesis and uptake of siderophores is controlled by the PacC-mediated ambient-pH regulatory system in Aspergillus nidulans. Eukaryot Cell 3:561–563.  https://doi.org/10.1128/EC.3.2.561-563.2004 CrossRefGoogle Scholar
  69. Enayetallah AE, French RA, Thibodeau MS, Grant DF (2004) Distribution of soluble epoxide hydrolase and of cytochrome P450 2C8, 2C9, and 2J2 in human tissues. J Histochem Cytochem 52:447–454.  https://doi.org/10.1177/002215540405200403 CrossRefGoogle Scholar
  70. Erik H, Bornsheuer UT (2003) Fluorophoric assay for the high throughput determination of amidase activity. Anal Chem 75:255–260.  https://doi.org/10.1021/ac0258610 CrossRefGoogle Scholar
  71. Faber K, Mischitz M, Kroutil Wo (1996) Microbial epoxide hydrolases. Acta Chem Scand 50:249–258.CrossRefGoogle Scholar
  72. Ferrandi EE, Marchesi C, Annovazzi C et al (2015a) Efficient epoxide hydrolase catalyzed resolutions of (+)- and (−)-cis/trans-limonene oxide. ChemCatChem 7:3171–3178.  https://doi.org/10.1002/cctc.201500608 CrossRefGoogle Scholar
  73. Ferrandi EE, Sayer C, Isupov MN et al (2015b) Discovery and characterization of thermophilic limonene-1,2-epoxide hydrolases from hot spring metagenomic libraries. FEBS J 282:2879–2894.  https://doi.org/10.1111/febs.13328 CrossRefGoogle Scholar
  74. Fretland AJ, Omiecinski CJ (2000) Epoxide hydrolases: biochemistry and molecular biology. Chem Biol Interact 129:41–59.  https://doi.org/10.1016/S0009-2797(00)00197-6 CrossRefGoogle Scholar
  75. Friedberg T, Lollmann B, Becker R et al (1994) The microsomal epoxide hydrolase has a single membrane signal anchor sequence which is dispensable for the catalytic activity of this protein. Biochem J 303:967–972.  https://doi.org/10.1042/bj3030967 CrossRefGoogle Scholar
  76. Fujii R, Nakagawa Y, Hiratake J et al (2005) Directed evolution of Pseudomonas aeruginosa lipase for improved amide-hydrolyzing activity. Protein Eng Des Sel 18:93–101.  https://doi.org/10.1093/protein/gzi001 CrossRefGoogle Scholar
  77. Genzel Y, Archelas A, Broxterman QB et al (2001) Microbiological transformations. 47. a step toward a green chemistry preparation of enantiopure (S)-2-,-3-, and -4-pyridyloxirane via an epoxide hydrolase catalyzed kinetic resolution screening for appropriate epoxide hydrolase. J Org Chem 66:538–543.  https://doi.org/10.1021/jo001406x CrossRefGoogle Scholar
  78. Giuliano KA, Lau EP, Fall RR (1980) Simplified liquid chromatograpghic assay for epoxide hydrolase. J Chromatogr 202:447–452.  https://doi.org/10.1016/S0021-9673(00)91830-2 CrossRefGoogle Scholar
  79. Goddard JP, Reymond JL (2004a) Recent advances in enzyme assays. Trends Biotechnol 22:363–370.  https://doi.org/10.1016/j.tibtech.2004.04.005 CrossRefGoogle Scholar
  80. Goddard JP, Reymond JL (2004b) Enzyme assays for high-throughput screening. Curr Opin Biotechnol 15:314–322.  https://doi.org/10.1016/j.copbio.2004.06.008 CrossRefGoogle Scholar
  81. Gomez GA, Morisseau C, Hammock BD, Christianson DW (2004) Structure of human epoxide hydrolase reveals mechanistic inferences on bifunctional catalysis in epoxide and phosphate ester hydrolysis. Biochemistry 43:4716–4723.  https://doi.org/10.1021/bi036189j CrossRefGoogle Scholar
  82. Grogan G, Rippe C, Willetts A (1997) Biohydrolysis of substituted styrene oxides by Beauveria densa CMC 3240. J Mol Catal B Enzym 3:253–257.  https://doi.org/10.1016/S1381-1177(97)00005-2 CrossRefGoogle Scholar
  83. Haeggström JZ (2000) Structure, function, and regulation of leukotriene A4 hydrolase. Am J Respir Criti Care Med 161:S25–S31.  https://doi.org/10.1164/ajrccm.161.supplement_1.ltta-6 CrossRefGoogle Scholar
  84. Haeggström JZ (2004) Leukotriene A4 hydrolase/aminopeptidase, the gatekeeper of chemotactic leukotriene B4 biosynthesis. J Biol Chem 279:50639–50642.  https://doi.org/10.1074/jbc.R400027200 CrossRefGoogle Scholar
  85. Haeggström JZ, Tholander F, Wetterholm A (2007) Structure and catalytic mechanisms of leukotriene A4 hydrolase. Prostaglandins Other Lipid Mediat 83:198–202.  https://doi.org/10.1016/j.prostaglandins.2007.01.006 CrossRefGoogle Scholar
  86. Hager LP, Lakner FJ, Basavapathruni A (1998) Chiral synthons via chloroperoxidase catalysis. J Mol Catal B Enzym 5:95–101.  https://doi.org/10.1016/S1381-1177(98)00013-7 CrossRefGoogle Scholar
  87. Hamada T, Fukuda T, Katsuki T (1996) Mechanism of one oxygen atom transfer from oxo (salen) manganese (V) complex to olefins. Tetrahedron 52:515–530.  https://doi.org/10.1016/0040-4020(95)00904-3 CrossRefGoogle Scholar
  88. Hamberg M (1999) An epoxy alcohol synthase pathway in higher plants: biosynthesis of antifungal trihydroxy oxylipins in leaves of potato. Lipids 34:1131–1142.  https://doi.org/10.1016/0040-4020(95)00904-3 CrossRefGoogle Scholar
  89. Hammock BD, Ratcliff M, Schooley DA (1980) Hydration of an 18O epoxide by a cytosolic epoxide hydrolase from mouse liver. Life Sci 27:1635–1641.  https://doi.org/10.1016/0024-3205(80)90636-0 CrossRefGoogle Scholar
  90. Harayama S, Kok M (1992) Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol 46:565–601.  https://doi.org/10.1146/annurev.mi.46.100192.003025 CrossRefGoogle Scholar
  91. Harris TR, Hammock BD (2013) Soluble epoxide hydrolase: gene structure, expression and deletion. Gene 526:61–74.  https://doi.org/10.1016/j.gene.2013.05.008 CrossRefGoogle Scholar
  92. Harris TR, Aronov PA, Jones PD et al (2008) Identification of two epoxide hydrolases in Caenorhabditis elegans that metabolize mammalian lipid signaling molecules. Arch Biochem Biophys 472:139–149.  https://doi.org/10.1016/j.abb.2008.01.016 CrossRefGoogle Scholar
  93. Hellström H, Steinreiber A, Mayer SF, Faber K (2001) Bacterial epoxide hydrolase-catalyzed resolution of a 2,2-disubstituted oxirane: optimization and upscaling. Biotechnol Lett 23:169–173.  https://doi.org/10.1023/A:1005636121060 CrossRefGoogle Scholar
  94. Heredia A (2003) Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer. Biochim Biophys Acta 1620:1–7.  https://doi.org/10.1016/S0304-4165(02)00510-X CrossRefGoogle Scholar
  95. Homburg S, Fleming I, Fisslthaler B et al (2002) The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase. Proc Natl Acad Sci USA 100:1552–1557.  https://doi.org/10.1073/pnas.0437829100 CrossRefGoogle Scholar
  96. Howe GA, Schilmiller AL (2002) Oxylipin metabolism in response to stress. Curr Opin Plant Biol 5:230–236.  https://doi.org/10.1016/S1369-5266(02)00250-9 CrossRefGoogle Scholar
  97. Hrenar T, Salopek-sondi B, Tang L et al (2016) Azidolysis of epoxides catalysed by the halohydrin dehalogenase from Arthrobacter sp. AD2 and a mutant with enhanced enantioselectivity: an (S)-selective HHDH. Tetrahedron : Asymmetry 27:930–935.  https://doi.org/10.1016/j.tetasy.2016.08.003 CrossRefGoogle Scholar
  98. Hu S, Hager LP (1999) Asymmetric epoxidation of functionalized cis-olefins catalyzed by chloroperoxidase. Tetrahedron Lett 40:1641–1644.  https://doi.org/10.1016/S0040-4039(99)00056-8 CrossRefGoogle Scholar
  99. Hu D, Tang C-D, Yang B et al (2015) Expression of a novel epoxide hydrolase of Aspergillus usamii E001 in Escherichia coli and its performance in resolution of racemic styrene oxide. J Ind Microbiol Biotechnol 42:671–680.  https://doi.org/10.1007/s10295-015-1604-y CrossRefGoogle Scholar
  100. Hua-jun Y, Fang Z, Awquib S et al (2011) Expression pattern of enzymes related to juvenile hormone metabolism in the silkworm, Bombyx mori L. Mol Biol Rep 38:4337–4342.  https://doi.org/10.1007/s11033-010-0559-3 CrossRefGoogle Scholar
  101. Huang F-C, Schwab W (2013) Molecular characterization of NbEH1 and NbEH2, two epoxide hydrolases from Nicotiana benthamiana. Phytochemistry 90:6–15.  https://doi.org/10.1016/j.phytochem.2013.02.020 CrossRefGoogle Scholar
  102. Hult K, Berglund P (2007) Enzyme promiscuity: mechanism and applications. Trends Biotechnol 25:231–238.  https://doi.org/10.1016/j.tibtech.2007.03.002 CrossRefGoogle Scholar
  103. Humble MS, Berglund P (2011) Biocatalytic Promiscuity. Eur J Org Chem 2011:3391–3401.  https://doi.org/10.1002/ejoc.201001664 CrossRefGoogle Scholar
  104. Hutt AJ (2002) The development of single-isomer molecules: why and how. CNS Spectr 7:14–22.  https://doi.org/10.1017/S1092852900028558 CrossRefGoogle Scholar
  105. Hwang S, Choi CY, Lee EY (2008) Enantioconvergent bioconversion of p-chlorostyrene oxide to (R)-p-chlorophenyl-1,2-ethandiol by the bacterial epoxide hydrolase of Caulobacter crescentus. Biotechnol Lett 30:1219–1225.  https://doi.org/10.1007/s10529-008-9668-7 CrossRefGoogle Scholar
  106. Imig JD, Walsh KA, Khan MAH et al (2012) Soluble epoxide hydrolase inhibition and peroxisome proliferator activated receptor γ agonist improve vascular function and decrease renal injury in hypertensive obese rats. Exp Biol Med 237:1402–1412.  https://doi.org/10.1258/ebm.2012.012225 CrossRefGoogle Scholar
  107. Irie R, Noda K, Ito Y et al (1990) Catalytic asymmetric epoxidation of unfunctionalized olefins. Tetrahedron Lett 31:7345–7348.  https://doi.org/10.1016/S0040-4039(00)88562-7 CrossRefGoogle Scholar
  108. Jacobs MHJ, Van Den Wijngaard AJ, Pentenga M, Janssen DB (1991) Characterization of the epoxide hydrolase from an epichlorohydrin-degrading Pseudomonas sp. Eur J Biochem 202:1217–1222.  https://doi.org/10.1111/j.1432-1033.1991.tb16493.x CrossRefGoogle Scholar
  109. Jacobsen EN, Zhang W, Muci AR et al (1991) Highly enantioselective epoxidation catalysts derived from 1,2-diaminocylohexane. J Am Chem Soc 113:7063–7064.  https://doi.org/10.1021/ja00018a068 CrossRefGoogle Scholar
  110. Jimenez DJ, Dini-Andreote F, Ottoni JR et al (2015) Compositional profile of α/β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites. Microb Biotechnol 8:604–613.  https://doi.org/10.1111/1751-7915.12157 CrossRefGoogle Scholar
  111. Jin H, Li Z, Dong X-W (2004) Enantioselective hydrolysis of various substituted styrene oxides with Aspergillus Niger CGMCC 0496. Org Biomol Chem 2:408–414.  https://doi.org/10.1039/B312469J CrossRefGoogle Scholar
  112. Jin H-X, Hu Z-C, Liu Z-Q, Zheng Y-G (2012a) Nitrite-mediated synthesis of chiral epichlorohydrin using halohydrin dehalogenase from Agrobacterium radiobacter AD1. Biotechnol Appl Biochem 59:170–177.  https://doi.org/10.1002/bab.1004 CrossRefGoogle Scholar
  113. Jin H-X, Hu Z-C, Zheng Y-G (2012b) Enantioselective hydrolysis of epichlorohydrin using whole Aspergillus niger ZJB-09173 cells in organic solvents. J Biosci 37:695–702.  https://doi.org/10.1007/s12038-012-9243-1 CrossRefGoogle Scholar
  114. Jin H-X, Liu Z-Q, Hu Z-C, Zheng Y-G (2013a) Production of (R)-epichlorohydrin from 1,3-dichloro-2-propanol by two-step biocatalysis using haloalcohol dehalogenase and epoxide hydrolase in two-phase system. Biochem Eng J 74:1–7.  https://doi.org/10.1016/j.bej.2013.02.005 CrossRefGoogle Scholar
  115. Jin H-X, Liu Z-Q, Hu Z-C, Zheng Y-G (2013b) Biosynthesis of (R)-epichlorohydrin at high substrate concentration by kinetic resolution of racemic epichlorohydrin with a recombinant epoxide hydrolase. Eng Life Sci 13:385–392.  https://doi.org/10.1002/elsc.201200179 CrossRefGoogle Scholar
  116. Jinyou Z, Reddy J, Senanayake C, Chartrain M (1995) Chiral bio-resolution of racemic indene oxide by fungal epoxide hydrolases. J Ferment Bioeng 80:244–246.  https://doi.org/10.1016/0922-338X(95)90823-I CrossRefGoogle Scholar
  117. Jochens H, Stiba K, Savile C et al (2009) Converting an esterase into an epoxide hydrolase. Angew Chem Int Ed 48:3532–3535.  https://doi.org/10.1002/anie.200806276 CrossRefGoogle Scholar
  118. Jochens H, Hesseler M, Stiba K et al (2011) Protein engineering of α/β-hydrolase fold enzymes. ChemBioChem 12:1508–1517.  https://doi.org/10.1002/cbic.201000771 CrossRefGoogle Scholar
  119. Johansson P, Unge T, Cronin A et al (2005) Structure of an atypical epoxide hydrolase from Mycobacterium tuberculosis gives insights into its function. J Mol Biol 351:1048–1056.  https://doi.org/10.1016/j.jmb.2005.06.055 CrossRefGoogle Scholar
  120. Kahakeaw D, Reetz MT (2008) A cell-based adrenaline assay for automated high-throughput activity screening of epoxide hydrolases. Chem Asian J 3:233–238.  https://doi.org/10.1002/asia.200700325 CrossRefGoogle Scholar
  121. Kamita SG, Oshita GH, Wang P et al (2013a) Characterization of HOVI-mEH1, a microsomal epoxide hydrolase from the glassy-winged sharpshooter Homalodisca vitripennis. Arch Insect Biochem Physiol 83:171–179.  https://doi.org/10.1002/arch.21100 CrossRefGoogle Scholar
  122. Kamita SG, Yamamoto K, Dadala MM et al (2013b) Cloning and characterization of a microsomal epoxide hydrolase from Heliothis virescens. Insect Biochem Mol Biol 43:219–228.  https://doi.org/10.1016/j.ibmb.2012.12.002 CrossRefGoogle Scholar
  123. Katsuki T, Sharpless K (1980) The first practical method for asymmetric epoxidation. J Am Chem Soc 102:5974–5976.  https://doi.org/10.1021/ja00538a077 CrossRefGoogle Scholar
  124. Kim HS, Lee SJ, Lee EY (2006) Development and characterization of recombinant whole-cell biocatalysts expressing epoxide hydrolase from Rhodotorula glutinis for enantioselective resolution of racemic epoxides. J Mol Catal B Enzym 43:2–8.  https://doi.org/10.1016/j.molcatb.2006.02.003 CrossRefGoogle Scholar
  125. Kim HS, Lee OK, Hwang S et al (2008) Biosynthesis of (R)-phenyl-1,2-ethanediol from racemic styrene oxide by using bacterial and marine fish epoxide hydrolases. Biotechnol Lett 30:127–133.  https://doi.org/10.1007/s10529-007-9495-2 CrossRefGoogle Scholar
  126. Kiyohara C, Otsu A, Shirakawa T et al (2002) Genetic polymorphisms and lung cancer susceptibility: a review. Lung cancer 37:241–256.  https://doi.org/10.1016/S0169-5002(02)00107-1 CrossRefGoogle Scholar
  127. Kolattukudy PE (2001) Polyesters in higher plants. Adv Biochem Eng Biotechnol 71:1–49.  https://doi.org/10.1007/3-540-40021-4_1 CrossRefGoogle Scholar
  128. Kong X-D, Yuan S, Li L et al (2014) Engineering of an epoxide hydrolase for efficient bioresolution of bulky pharmaco substrates. Proc Natl Acad Sci USA 111:15717–15722.  https://doi.org/10.1073/pnas.140491511 CrossRefGoogle Scholar
  129. Koschorreck M, Fischer M, Barth S, Pleiss J (2005) How to find soluble proteins: a comprehensive analysis of alpha/beta hydrolases for recombinant expression in E.coli. BMC Genomics 6:49.  https://doi.org/10.1186/1471-2164-6-49 CrossRefGoogle Scholar
  130. Kotaki T, Shinada T, Kaihara K et al (2009) Structure determination of a new juvenile hormone from a heteropteran insect. Org Lett 11:5234–5237.  https://doi.org/10.1021/ol902161x CrossRefGoogle Scholar
  131. Kotik M, Brichac J, Kyslík P (2005) Novel microbial epoxide hydrolases for biohydrolysis of glycidyl derivatives. J Biotechnol 120:364–375.  https://doi.org/10.1016/j.jbiotec.2005.06.011 CrossRefGoogle Scholar
  132. Kotik M, Archelas A, Famerova V et al (2011) Laboratory evolution of an epoxide hydrolase-towards an enantioconvergent biocatalyst. J Biotechnol 156:1–10.  https://doi.org/10.1016/j.jbiotec.2011.08.003 CrossRefGoogle Scholar
  133. Kotik M, Zhao W, Iacazio G, Archelas A (2013) Directed evolution of metagenome-derived epoxide hydrolase for improved enantioselectivity and enantioconvergence. J Mol Catal B Enzym 91:44–51.  https://doi.org/10.1016/j.molcatb.2013.02.006 CrossRefGoogle Scholar
  134. Kotika M, Stepaneka V, Grulicha M et al (2010) Access to enantiopure aromatic epoxides and diols using epoxide hydrolases derived from total biofilter DNA. J Mol Catal B Enzym 65:41–48.  https://doi.org/10.1016/j.molcatb.2010.01.016 CrossRefGoogle Scholar
  135. Kourist R, Jochens H, Bartsch S et al (2010) The alpha/beta-hydrolase fold 3DM database (ABHDB) as a tool for protein engineering. Chembiochem 11:1635–1643.  https://doi.org/10.1002/cbic.201000213 CrossRefGoogle Scholar
  136. Krenn W, Osprian I, Kroutil W et al (1999) Bacterial epoxide hydrolases of opposite enantiopreference. Biotechnol Lett 21:687–690.  https://doi.org/10.1023/A:1005565108510 CrossRefGoogle Scholar
  137. Kroutil W, Mischitz M, Faber K (1997) Deracemization of (±)-2,3-disubstituted oxiranes via biocatalytic hydrolysis using bacterial epoxide hydrolases: kinetics of an enantioconvergent process. J Chem Soc, Perkin Trans 1(1):3629–3636.  https://doi.org/10.1039/A704812B CrossRefGoogle Scholar
  138. Kuipers RK, Joosten H-J, van Berkel WJH et al (2010) 3DM: systematic analysis of heterogeneous superfamily data to discover protein functionalities. Proteins 78:2101–2113.  https://doi.org/10.1002/prot.22725 CrossRefGoogle Scholar
  139. Kumar P, Naidu V, Gupta P (2007) Application of hydrolytic kinetic resolution (HKR) in the synthesis of bioactive compounds. Tetrahedron 63:2745–2785.  https://doi.org/10.1002/chin.200724243 CrossRefGoogle Scholar
  140. Kumar R, Wani SI, Chauhan NS et al (2011) Cloning and characterization of an epoxide hydrolase from Cupriavidus metallidurans-CH34. Protein Expr Purif 79:49–59.  https://doi.org/10.1016/j.pep.2011.04.007 CrossRefGoogle Scholar
  141. Labuschagne M, Botes AL, Albertyn J (2004) Cloning and sequencing of an epoxide hydrolase gene from Rhodosporidium paludigenum. DNA Seq 15:202–205.  https://doi.org/10.1080/10425170410001702177 CrossRefGoogle Scholar
  142. Lee EY, Shuler ML (2007) Molecular engineering of epoxide hydrolase and its application to asymmetric and enantioconvergent hydrolysis. Biotechnol Bioeng 98:318–327.  https://doi.org/10.1002/bit.21444 CrossRefGoogle Scholar
  143. Lee EY, Yoo S-S, Kim HS et al (2004) Production of (S)-styrene oxide by recombinant Pichia pastoris containing epoxide hydrolase from Rhodotorula glutinis. Enzym Microb Technol 35:624–631.  https://doi.org/10.1016/j.enzmictec.2004.08.016 CrossRefGoogle Scholar
  144. Lequeu J, Fauconnier M-L, Chammaï A et al (2003) Formation of plant cuticle: evidence for the occurrence of the peroxygenase pathway. Plant J 36:155–164.  https://doi.org/10.1046/j.1365-313X.2003.01865.x CrossRefGoogle Scholar
  145. Li C, Feng X-W, Wang N et al (2008) Biocatalytic promiscuity: the first lipase-catalysed asymmetric aldol reaction. Green Chem 10:616–618.  https://doi.org/10.1039/B803406K CrossRefGoogle Scholar
  146. Libby RD, Thomas JA, Kaiser LW, Hagerg LP (1982) Chloroperoxidase halogenation reactions. J Biol Chem 257:5030–5037Google Scholar
  147. Lin S, Horsman GP, Chen Y et al (2009) Characterization of the SgcF epoxide hydrolase supporting an (R)-vicinal diol intermediate for enediyne antitumor antibiotic C-1027 biosynthesis. J Am Chem Soc 131:16410–16417.  https://doi.org/10.1021/ja901242s CrossRefGoogle Scholar
  148. Lin S, Horsman GP, Shen B (2010) Characterization of the epoxide hydrolase NcsF2 from the Neocarzinostatin biosynthetic gene cluster. Org Lett 12:3816–3819.  https://doi.org/10.1021/ol101473t CrossRefGoogle Scholar
  149. Lin H, Liu J-Y, Wang H-B et al (2011a) Biocatalysis as an alternative for the production of chiral epoxides: a comparative review. J Mol Catal B Enzym 72:77–89.  https://doi.org/10.1016/j.molcatb.2011.07.012 CrossRefGoogle Scholar
  150. Lin H, Liu Y, Wu Z-L (2011b) Asymmetric epoxidation of styrene derivatives by styrene monooxygenase from Pseudomonas sp. LQ26: effects of α- and β-substituents. Tetrahedron: Asymmetry 22:134–137.  https://doi.org/10.1016/j.tetasy.2010.12.022 CrossRefGoogle Scholar
  151. Lin H, Liu Y, Wu Z-L (2011c) Highly diastereo- and enantio-selective epoxidation of secondary allylic alcohols catalyzed by styrene monooxygenase. Chem Commun 47:2610–2612.  https://doi.org/10.1039/C0CC04360E CrossRefGoogle Scholar
  152. Liu Y, Wu S, Wang J et al (2007) Cloning, expression, purification, and characterization of a novel epoxide hydrolase from Aspergillus niger SQ-6. Protein Expr Purif 53:239–246.  https://doi.org/10.1016/j.pep.2006.06.017 CrossRefGoogle Scholar
  153. Liu Z-Q, Gao A-C, Wang Y-J et al (2014) Expression , characterization , and improvement of a newly cloned halohydrin dehalogenase from Agrobacterium tumefaciens and its application in production of epichlorohydrin. J Ind Microbiol Biotechnol 41:1145–1158.  https://doi.org/10.1007/s10295-014-1443-2 CrossRefGoogle Scholar
  154. Liu Y, Liu Y-C, Wu Z-L (2016) Asymmetric bio-epoxidation catalyzed with the styrene monooxygenase from Pseudomonas sp. LQ26.  https://doi.org/10.1186/s40643-016-0087-7
  155. Lombó F, Menéndez N, Salas JA, Méndez C (2006) The aureolic acid family of antitumor compounds: structure, mode of action, biosynthesis, and novel derivatives. Appl Microbiol Biotechnol 73:1–14.  https://doi.org/10.1007/s00253-006-0511-6 CrossRefGoogle Scholar
  156. Lü F-G, Fu K-Y, Guo W-C, Li G-Q (2015) Characterization of two juvenile hormone epoxide hydrolases by RNA interference in the Colorado potato beetle. Gene 570:264–271.  https://doi.org/10.1016/j.gene.2015.06.032 CrossRefGoogle Scholar
  157. Luo X-J, Yu H-L, Xu J-H (2012) Genomic data mining: an efficient way to find new and better enzymes. Enzym Eng 1:104.  https://doi.org/10.4172/2329-6674.1000104 CrossRefGoogle Scholar
  158. Mahajabeen P, Chadha A (2011) One-pot synthesis of enantiomerically pure 1,2-diols: asymmetric reduction of aromatic α-oxoaldehydes catalysed by Candida parapsilosis ATCC 7330. Tetrahedron: Asymmetry 22:2156–2160.  https://doi.org/10.1016/j.tetasy.2011.12.008 CrossRefGoogle Scholar
  159. Mancini JA, Evans JF (1995) Cloning and characterization of the human leukotriene A4 hydrolase gene. Eur J Biochem 231:65–71.  https://doi.org/10.1111/j.1432-1033.1995.0065f.x CrossRefGoogle Scholar
  160. Manoj KM, Archelas A, Baratti J, Furstoss R (2001) Microbiological transformations. Part 45: a green chemistry preparative scale synthesis of enantiopure building blocks of Eliprodil: elaboration of a high substrate concentration epoxide hydrolase-catalyzed hydrolytic kinetic resolution process. Tetrahedron 57:695–701.  https://doi.org/10.1016/S0040-4020(00)01032-2 CrossRefGoogle Scholar
  161. Mantovani SM, de Oliveira LG, Marsaioli AJ (2008) Whole cell quick E for epoxide hydrolase screening using fluorescent probes. J Mol Catal B Enzym 52–53:173–177.  https://doi.org/10.1016/j.molcatb.2007.12.013 CrossRefGoogle Scholar
  162. Martins MP, Mouad AM, Boschini L et al (2011) Marine fungi Aspergillus sydowii and Trichoderma sp. catalyze the hydrolysis of benzyl glycidyl ether. Mar Biotechnol 13:314–320.  https://doi.org/10.1007/s10126-010-9302-2 CrossRefGoogle Scholar
  163. Mateo C, Archelas A, Furstoss R (2003) A spectrophotometric assay for measuring and detecting an epoxide hydrolase activity. Anal Biochem 314:135–141.  https://doi.org/10.1016/S0003-2697(02)00646-2 CrossRefGoogle Scholar
  164. Mcgee J, Fitzpatricks F (1985) Enzymatic hydration of leukotriene A4. J Biol Chem 260:12832–12837Google Scholar
  165. Milo A, Neumann R (2010) A tripodal peptidic titanium phosphonate as a homochiral porous solid medium for the heterogeneous enantioselective hydration of epoxides. Adv Synth Catal 352:2159–2165.  https://doi.org/10.1002/adsc.201000373 CrossRefGoogle Scholar
  166. Molina G, Bution ML, Bicas JL et al (2015) Comparative study of the bioconversion process using R-(+)- and S-(-)-limonene as substrates for Fusarium oxysporum 152B. Food Chem 174:606–613.  https://doi.org/10.1016/j.foodchem.2014.11.059 CrossRefGoogle Scholar
  167. Monfort N, Archelas A, Furstoss R (2002) Enzymatic transformations. Part 53: epoxide hydrolase-catalysed resolution of key synthons for azole antifungal agents. Tetrahedron: Asymmetry 13:2399–2401.  https://doi.org/10.1016/S0957-4166(02)00681-X CrossRefGoogle Scholar
  168. Monfort N, Archelas A, Furstoss R (2004) Enzymatic transformations. Part 55: highly productive epoxide hydrolase catalysed resolution of an azole antifungal key synthon. Tetrahedron 60:601–605.  https://doi.org/10.1016/j.tet.2003.10.119 CrossRefGoogle Scholar
  169. Montaña JS, Jiménez DJ, Hernández M et al (2012) Taxonomic and functional assignment of cloned sequences from high Andean forest soil metagenome. Antonie Van Leeuwenhoek 101:205–215.  https://doi.org/10.1007/s10482-011-9624-8 CrossRefGoogle Scholar
  170. Monterde MI, Lombard M, Archelas A et al (2004) Enzymatic transformations. Part 58: enantioconvergent biohydrolysis of styrene oxide derivatives catalysed by the Solanum tuberosum epoxide hydrolase. Tetrahedron: Asymmetry 15:2801–2805.  https://doi.org/10.1016/j.tetasy.2004.06.032 CrossRefGoogle Scholar
  171. Morisseau C, Hammock BD (2005) Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles. Annu Rev Pharmacol Toxicol 45:311–333.  https://doi.org/10.1146/annurev.pharmtox.45.120403.095920 CrossRefGoogle Scholar
  172. Morisseau C, Hammock BD (2013) Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol 53:37–58.  https://doi.org/10.1146/annurev-pharmtox-011112-140244 CrossRefGoogle Scholar
  173. Morisseau C, Nellaiah H, Archelas A et al (1997) Asymmetric hydrolysis of racemic para-nitrostyrene oxide using an epoxide hydrolase preparation from Aspergillus niger. Enzym Microbiol Technol 20:446–452.  https://doi.org/10.1016/S0141-0229(97)00168-3 CrossRefGoogle Scholar
  174. Morisseau C, Archelas A, Guitton C et al (1999) Purification and characterization of a highly enantioselective epoxide hydrolase from Aspergillus niger. Eur J Biochem 263:386–395.  https://doi.org/10.1046/j.1432-1327.1999.00519.x CrossRefGoogle Scholar
  175. Mowbray SL, Elfstrom LT, Ahlgren KM et al (2006) X-ray structure of potato epoxide hydrolase sheds light on substrate specificity in plant enzymes. Protein Sci 15:1628–1637.  https://doi.org/10.1110/ps.051792106 CrossRefGoogle Scholar
  176. Mullen R, Trelease R, Duerk H (1999) Differential subcellular localization of endogenous and transfected soluble epoxide hydrolase in mammalian cells: evidence for isozyme variants. FEBS Lett 445:301–305.  https://doi.org/10.1016/S0014-5793(99)00142-8 CrossRefGoogle Scholar
  177. Muller F, Arand M, Frank H et al (1997) Visualization of a covalent intermediate between microsomal epoxide hydrolase, but not cholesterol epoxide hydrolase, and their substrates. Eur J Biochem 245:490–496.  https://doi.org/10.1111/j.1432-1033.1997.00490.x CrossRefGoogle Scholar
  178. Munoz-Guerrero FA, Sergio Á, Vazquez-Duhalt R, Alderete JB (2015) Enhancement of operational stability of chloroperoxidase from Caldariomyces fumago by immobilization onto mesoporous supports and the use of co-solvents. J Mol Catal B Enzym 116:1–8.  https://doi.org/10.1016/j.molcatb.2015.02.014 CrossRefGoogle Scholar
  179. Murray GI, Path M, Paterson PJ et al (1993) The expression of cytochrome P-450, epoxide hydrolase, and glutathione S-transferase in hepatocellular carcinoma. Cancer 71:36–43.  https://doi.org/10.1002/1097-0142(19930101)71:1<36::AID-CNCR2820710107>3.0.CO;2-J CrossRefGoogle Scholar
  180. Nakamura T, Nagasawa T, Yu F et al (1994) Purification and characterization of two epoxide hydrolases from Corynebacterium sp . strain N-1074. Appl Env Microbiol 60:4630–4633Google Scholar
  181. Nardini M, Dijkstra BW (1999) α/β hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9:732–737.  https://doi.org/10.1016/S0959-440X(99)00037-8 CrossRefGoogle Scholar
  182. Nardini M, Ridder IS, Rozeboom J et al (1999) The X-ray structure of epoxide hydrolase from Agrobacterium radiobacter AD1. J Biol Chem 274:14579–14586.  https://doi.org/10.1074/jbc.274.21.14579 CrossRefGoogle Scholar
  183. Nashed NT, Michaud DP, Levin W, Jerina DM (1986) 7-dehydrocholesterol 5,6β-oxide as a mechanism-based inhibitor of microsomal cholesterol oxide hydrolase. J Biol Chem 261:2510–2513Google Scholar
  184. Newman JW, Morisseau C, Hammock BD (2005) Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog Lipid Res 44:1–51.  https://doi.org/10.1016/j.plipres.2004.10.001 CrossRefGoogle Scholar
  185. Nguyen LA, He H, Pham-huy C (2006) Chiral drugs: an overview. Int J Biomed Sci 2:85–100Google Scholar
  186. Nolan LC, O’Connor KE (2008) Dioxygenase- and monooxygenase-catalysed synthesis of cis-dihydrodiols, catechols, epoxides and other oxygenated products. Biotechnol Lett 30:1879–1891.  https://doi.org/10.1007/s10529-008-9791-5 CrossRefGoogle Scholar
  187. Ollis DL, Cheah E, Cygler M et al (1992) The α/β hydrolase fold. Protein Eng 5:197–211.  https://doi.org/10.1093/protein/5.3.197 CrossRefGoogle Scholar
  188. Orru RVA, Faber K (1999) Stereoselectivities of microbial epoxide hydrolases. Curr Opin Chem Biol 3:16–21.  https://doi.org/10.1016/S1367-5931(99)80004-0 CrossRefGoogle Scholar
  189. Orru RVA, Mayer SF, Kroutil W, Faber K (1998) Chemoenzymatic deracemization of (±)-2,2-disubstituted oxiranes. Tetrahedron 54:859–874.  https://doi.org/10.1016/S0040-4020(97)10338-6 CrossRefGoogle Scholar
  190. Osprian I, Kroutil W, Mischitz M, Faber K (1997) Biocatalytic resolution of 2-methyl-2-(aryl)alkyloxiranes using novel bacterial epoxide hydrolases. Tetrahedron: Asymmetry 8:65–71.  https://doi.org/10.1016/S0957-4166(96)00493-4 CrossRefGoogle Scholar
  191. Osprian I, Stampfer W, Faber K (2000) Selectivity enhancement of epoxide hydrolase catalyzed resolution of 2,2-disubstituted oxiranes by substrate modification. J Chem Soc, Perkin Trans 1:3779–3785.  https://doi.org/10.1039/B005203P CrossRefGoogle Scholar
  192. Pace-Asciak CR (1994) Hepoxilins: a review on their cellular actions. Biochim Biophys Acta 1215:1–8.  https://doi.org/10.1016/0005-2760(94)90087-6 CrossRefGoogle Scholar
  193. Pace-Asciak CR, Lee W-S (1989) Purification of hepoxilin epoxide hydrolase from rat liver. J Biol Chem 264:9310–9313Google Scholar
  194. Pan HF (2010) Molecular cloning and characterization of a cis-epoxysuccinate hydrolase from Bordetella sp. BK-52. J Microbiol Biotechnol 20:659–665.  https://doi.org/10.4014/jmb.0905.05059 CrossRefGoogle Scholar
  195. Patel RN (2004) Biocatalytic synthesis of chiral pharmaceutical intermediates. Food Technol Biotechnol 42:305–325.  https://doi.org/10.1007/BF02523498 CrossRefGoogle Scholar
  196. Pavlova M, Klvana M, Prokop Z et al (2009) Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat Chem Biol 5:727–733.  https://doi.org/10.1038/nchembio.205 CrossRefGoogle Scholar
  197. Pedragosa-Moreau S, Archelas A, Furstoss R (1993) Microbiological transformations. 28. enantiocomplementary epoxide hydrolyses as a preparative access to both enantiomers of styrene oxide. J Org Chem 58:5533–5536.  https://doi.org/10.1021/jo00072a044 CrossRefGoogle Scholar
  198. Peeliwal AK, Bagade SB, Bonde CG (2010) A review: stereochemical consideration and eudismic ratio in chiral drug development. J Biomed Sci Res 2:29–45.Google Scholar
  199. Pellissier H (2003) Dynamic kinetic resolution. Tetrahedron 59:8291–8327.  https://doi.org/10.1016/S0040-4020(03)01022-6 CrossRefGoogle Scholar
  200. Reymond J (2001) New high-throughput screening assays for biocatalysis. Chimia (Aarau) 55:1049–1052. https://doi.org/Google Scholar
  201. Riera A, Moreno M (2010) Synthetic applications of chiral unsaturated epoxy alcohols prepared by sharpless asymmetric epoxidation. Molecules 15:1041–1073.  https://doi.org/10.3390/molecules15021041 CrossRefGoogle Scholar
  202. Rink R, Fennema M, Smids M et al (1997) Primary structure and catalytic mechanism of the epoxide hydrolase from primary structure and catalytic mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1. J Biol Chem 272:14650–14657.  https://doi.org/10.1074/jbc.272.23.14650 CrossRefGoogle Scholar
  203. Rink R, Spelberg JHL, Pieters RJ et al (1999) Mutation of tyrosine residues involved in the alkylation half reaction of epoxide hydrolase from Agrobacterium radiobacter AD1 results in improved enantioselectivity. J Am Chem Soc 121:7417–7418.  https://doi.org/10.1021/ja990501o CrossRefGoogle Scholar
  204. Ronzella J, Lucélia O, Sanderson C et al (2017) Functional metagenomics of oil-impacted mangrove sediments reveals high abundance of hydrolases of biotechnological interest. World J Microbiol Biotechnol 33:141.  https://doi.org/10.1007/s11274-017-2307-5 CrossRefGoogle Scholar
  205. Rui L, Cao L, Chen W et al (2005) Protein engineering of epoxide hydrolase from Agrobacterium radiobacter AD1 for enhanced activity and enantioselective production of (R)-1-phenylethane-1,2-diol. Appl Environ Microbiol 71:3995–4003.  https://doi.org/10.1128/AEM.71.7.3995-4003.2005 CrossRefGoogle Scholar
  206. Sadyandy R, Fernandes RA, Kumar P (2005) An asymmetric dihydroxylation route to (R)-(–)-octopamine, (R)- (–)-tembamide and (R)-(–)-aegeline. Arkivoc 3:36–43.  https://doi.org/10.3998/ark.5550190.0006.305 CrossRefGoogle Scholar
  207. Saini P, Sareen D (2017) An overview on the enhancement of enantioselectivity and etability of microbial epoxide hydrolases. Mol Biotechnol 59:98–116.  https://doi.org/10.1007/s12033-017-9996-8 CrossRefGoogle Scholar
  208. Saini P, Wani SI, Kumar R et al (2014) Trigger factor assisted folding of the recombinant epoxide hydrolases identified from C. pelagibacter and S. nassauensis. Protein Expr Purif 104C:71–84.  https://doi.org/10.1016/j.pep.2014.09.004 CrossRefGoogle Scholar
  209. Saini P, Kumar N, Wani SI et al (2017) Bioresolution of racemic phenyl glycidyl ether by a putative recombinant epoxide hydrolase from Streptomyces griseus NBRC 13350. World J Microbiol Biotechnol 33:82.  https://doi.org/10.1007/s11274-017-2248-z CrossRefGoogle Scholar
  210. Sandberg M, Meijer J (1996) Structural characterization of the human soluble epoxide hydrolase gene (EPHX2). Biochem Biophys Res Commun 221:333–339.  https://doi.org/10.1006/bbrc.1996.0596 CrossRefGoogle Scholar
  211. Sato Y, Natsume R, Tsuda M et al (2007) Crystallization and preliminary crystallographic analysis of a haloalkane dehalogenase, DbjA, from Bradyrhizobium japonicum USDA110. Acta Crystallogr Sect F Struct Biol Cryst Commun 63:294–296.  https://doi.org/10.1107/S1744309107008652 CrossRefGoogle Scholar
  212. Schaus SE, Brandes BD, Larrow JF et al (2002) Highly selective hydrolytic kinetic resolution of terminal epoxides catalyzed by chiral (salen) Co III complexes. practical synthesis of enantioenriched terminal epoxides and 1,2-diols. J Am Chem Soc 124:1307–1315.  https://doi.org/10.1021/ja016737l CrossRefGoogle Scholar
  213. Schmid A, Hofstetter K, Feiten È et al (2001) Integrated biocatalytic synthesis on gram scale: the highly enantioselective preparation of chiral oxiranes with styrene monooxygenase. Adv Synth Catal 343:732–737.  https://doi.org/10.1002/1615-4169(200108)343:6/7<732::AID-ADSC732>3.0.CO;2-Q CrossRefGoogle Scholar
  214. Schober M, Faber K (2013) Inverting hydrolases and their use in enantioconvergent biotransformations. Trends Biotechnol 31:468–478.  https://doi.org/10.1016/j.tibtech.2013.05.005 CrossRefGoogle Scholar
  215. Scott RP (2003) Principles and practice of chromatography. Chrom-ed book series.Google Scholar
  216. Sello G, Orsini F, Bernasconi S, Di Gennaro P (2006) Synthesis of enantiopure 2-amino-1-phenyl and 2-amino-2-phenyl ethanols using enantioselective enzymatic epoxidation and regio- and diastereoselective chemical aminolysis. Tetrahedron: Asymmetry 17:372–376.  https://doi.org/10.1016/j.tetasy.2006.01.009 CrossRefGoogle Scholar
  217. Sevanian A, Mcleod LL (1986) Catalytic properties and inhibition of hepatic cholesterol-epoxide hydrolase. J Biol Chem 261:54–59Google Scholar
  218. Sevanian A, Peterson AR (1984) Cholesterol epoxide is a direct-acting mutagen. Proc Natl Acad Sci USA 81:4198–4202.  https://doi.org/10.1073/pnas.81.13.4198 CrossRefGoogle Scholar
  219. Share MR, Roe RM (1988) A partition assay for the simultaneous determination of insect juvenile hormone esterase and epoxide hydrolase activity. Anal Biochem 169:81–88.  https://doi.org/10.1016/0003-2697(88)90257-6 CrossRefGoogle Scholar
  220. Sharpless KB (2002) Searching for new reactivity (Nobel Lecture). Angew Chem Int Ed 41:2024–2032.  https://doi.org/10.1002/1521-3773(20020617)41:12<2024::AID-ANIE2024>3.0.CO;2-O CrossRefGoogle Scholar
  221. Shen HC, Hammock BD (2012) Discovery of inhibitors of soluble epoxide hydrolase: a target with multiple potential therapeutic indications. J Med Chem 55:1789–1808.  https://doi.org/10.1021/jm201468j CrossRefGoogle Scholar
  222. Sheng Y, Wei C, Zhang Z (2011) Enantioselective hydrolysis of glycidyl methylphenyl ethers by Botryosphaeria dothidea ZJUZQ007: effect of substitution pattern on enantioselectivity. Appl Biochem Biotechnol 164:125–132.  https://doi.org/10.1007/s12010-010-9120-z CrossRefGoogle Scholar
  223. Shou M, Gonzalez FJ, Gelboin HV (1996) Stereoselective epoxidation and hydration at the K-Region of polycyclic aromatic hydrocarbons by cDNA-expressed cytochromes P450 1A1, 1A2, and epoxide hydrolase. Biochemistry 35:15807–15813.  https://doi.org/10.1021/bi962042z CrossRefGoogle Scholar
  224. Silvente-Poirot S, Poirot M (2012) Cholesterol epoxide hydrolase and cancer. Curr Opin Pharmacol 12:696–703.  https://doi.org/10.1016/j.coph.2012.07.007 CrossRefGoogle Scholar
  225. Simeó Y, Faber K (2006) Selectivity enhancement of enantio- and stereo-complementary epoxide hydrolases and chemo-enzymatic deracemization of (±)-2-methylglycidyl benzyl ether. Tetrahedron: Asymmetry 17:402–409.  https://doi.org/10.1016/j.tetasy.2005.12.018 CrossRefGoogle Scholar
  226. Slade M, Zibbitt C (1972) Metabolism of Cecropia juvenile hormone in insects and in mammals. Insect juvenile hormones: chemistry and actions. Academic, New York.  https://doi.org/10.1016/B978-0-12-490950-2.50012-7 CrossRefGoogle Scholar
  227. Smit MS (2004) Fungal epoxide hydrolases: new landmarks in sequence-activity space. Trends Biotechnol 22:123–129.  https://doi.org/10.1016/j.tibtech.2004.01.012 CrossRefGoogle Scholar
  228. Smith JG (1984) Synthetically useful reactions of epoxides synthesis. Synthesis (Stuttg) 8:629–656.  https://doi.org/10.1055/s-1984-30921 CrossRefGoogle Scholar
  229. Spelberg JHL, Vlieg JETVH, Tang L et al (2001) Highly enantioselective and regioselective biocatalytic azidolysis of aromatic epoxides. Org Lett 3:41–43.  https://doi.org/10.1021/ol0067540 CrossRefGoogle Scholar
  230. Spelberg JHL, Rink R, Archelas A et al (2002) Biocatalytic potential of the epoxide hydrolase from Agrobacterium radiobacter AD1 and a mutant with enhanced enantioselectivity. Adv Synth Catal 344:980–985.  https://doi.org/10.1002/1615-4169(200210)344:9<980::AID-ADSC980>3.0.CO;2-A CrossRefGoogle Scholar
  231. Steinreiber A, Faber K (2001) Microbial epoxide hydrolases for preparative biotransformations. Curr Opin Biotechnol 12:552–558.  https://doi.org/10.1016/S0958-1669(01)00262-2 CrossRefGoogle Scholar
  232. Steinreiber A, Osprian I, Mayer SF et al (2000) Enantioselective hydrolysis of functionalized 2,2-disubstituted oxiranes with bacterial epoxide hydrolases. Eur J Org Chem 2000(22):3703–3711.  https://doi.org/10.1002/1099-0690(200011)2000:22<3703::AID-EJOC3703>3.0.CO;2-3 CrossRefGoogle Scholar
  233. Steinreiber A, Edegger K, Mayer SF, Faber K (2001a) Enantio- and diastereo-convergent synthesis of (2R, 5R)- and (2R, 5S)-pityol through enzyme-triggered ring closure. Tetrahedron: Asymmetry 12:2067–2071.  https://doi.org/10.1016/S0957-4166(01)00370-6 CrossRefGoogle Scholar
  234. Steinreiber A, Mayer SF, Faber K (2001b) Biocatalytic asymmetric and enantioconvergent hydrolysis of trisubstituted oxiranes. Tetrahedron: Asymmetry 12:1519–1528.  https://doi.org/10.1016/S0957-4166(01)00256-7 CrossRefGoogle Scholar
  235. Summerer S, Hanano A, Utsumi S et al (2002) Stereochemical features of the hydrolysis of 9,10-epoxystearic acid catalysed by plant and mammalian epoxide hydrolases. Biochem J 366:471–480.  https://doi.org/10.1042/BJ20011778 CrossRefGoogle Scholar
  236. Sun P, Leeson C, Zhi X, Lenga F, Pierceb RH, Henryb MS, Reina KS (2016) Characterization of an epoxide hydrolase from the Florida Red tide dinoflagellate, Karenia brevis. Phytochemistry 122:11–21.  https://doi.org/10.1016/j.phytochem.2015.11.002 CrossRefGoogle Scholar
  237. Sura P, Sura R, Enayetallah AE, Grant DF (2008) Distribution and expression of soluble epoxide hydrolase in human brain. J Histochem Cytochem 56:551–559.  https://doi.org/10.1369/jhc.2008.950659 CrossRefGoogle Scholar
  238. Thunnissen MMGM, Nordlund P, Haeggström JZ (2001) Crystal structure of human leukotriene A4 hydrolase, a bifunctional enzyme in inflammation. Nat Stuct Biol 8:131–135.  https://doi.org/10.1038/84117 CrossRefGoogle Scholar
  239. Tokunaga M, Larrow J, Kakiuchi F, Jacobsen E (1997) Asymmetric catalysis with water: efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. Science 277:936–938.  https://doi.org/10.1126/science.277.5328.936 CrossRefGoogle Scholar
  240. Torres Pazmiño DE, Winkler M, Glieder A, Fraaije MW (2010) Monooxygenases as biocatalysts: classification, mechanistic aspects and biotechnological applications. J Biotechnol 146:9–24.  https://doi.org/10.1016/j.jbiotec.2010.01.021 CrossRefGoogle Scholar
  241. Tsubota T, Nakakura T, Shiotsuki T (2010) Molecular characterization and enzymatic analysis of juvenile hormone epoxide hydrolase genes in the red flour beetle Tribolium castaneum. Insect Mol Biol 19:399–408.  https://doi.org/10.1111/j.1365-2583.2010.01001.x CrossRefGoogle Scholar
  242. Tu Y, Wang Z, Shi Y (1996) An efficient asymmetric epoxidation method for trans-olefins mediated by a fructose-derived ketone. J Am Chem Soc 118:9806–9807.  https://doi.org/10.1021/ja962345g CrossRefGoogle Scholar
  243. Valery MD (2003) Oxidation, epoxidation and sulfoxidation reactions catalysed by haloperoxidases. Tetrahedron 59:4701–4720.  https://doi.org/10.1016/S0040-4020(03)00701-4 CrossRefGoogle Scholar
  244. Van den Wijngaard AJ, Janssen DB, Witholt B (1989) Degradation of epichlorohydrin and halohydrins by bacterial cultures isolated from freshwater sediment. J Gen Microbiol 135:2199–2208.  https://doi.org/10.1099/00221287-135-8-2199 CrossRefGoogle Scholar
  245. Van Der Werf MJ, Overkamp KM, De Bont JAM (1998) Limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14 belongs to a novel class of epoxide hydrolases. J Bacteriol 180:5052–5057Google Scholar
  246. van der Werf MJ, de Bont JAM, Swarts HJ (1999) Acid-catalyzed enzymatic hydrolysis of 1-methylcyclohexene oxide. Tetrahedron: Asymmetry 10:4225–4230.  https://doi.org/10.1016/S0957-4166(99)00449-8 CrossRefGoogle Scholar
  247. van Loo B, Kingma J, Arand M et al (2006) Diversity and biocatalytic potential of epoxide hydrolases identified by genome analysis. Appl Environ Microbiol 72:2905–2917.  https://doi.org/10.1128/AEM.72.4.2905-2917.2006 CrossRefGoogle Scholar
  248. Visser H, De Bont JA, Verdoes JC (1999) Isolation and characterization of the epoxide hydrolase- encoding gene from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 65:5459–5463Google Scholar
  249. Voet D, Voet JG (2004) Biochemistry, 3rd edn. Wiley, HobokenGoogle Scholar
  250. von Moos R, Stolz R, Cerny T, Gillessen S (2003) Thalidomide: from tragedy to promise. Swiss Med Wkly 133:77–87. https://doi.org/2003/05/smw-09947Google Scholar
  251. Wahler D, Reymond J (2002) The adrenaline test for enzymes. Angew Chem Int Ed 41:1229–1232.  https://doi.org/10.1002/1521-3773(20020402)41:7<1229::AID-ANIE1229>3.0.CO;2-5 CrossRefGoogle Scholar
  252. Wandel U, Mischitz M, Kroutil W, Faber K (1995) Highly selective asymmetric hydrolysis of 2,2-disubstituted epoxides using lyophilized cells of Rhodococcus sp. NCIMB 11216. J Chem Soci, Perkin Trans 1:735–736.  https://doi.org/10.1039/P19950000735 CrossRefGoogle Scholar
  253. Wang Z, Wang Y, Su Z (2013) Purification and characterization of a cis-epoxysuccinic acid hydrolase from Nocardia tartaricans CAS-52, and expression in Escherichia coli. Appl Microbiol Biotechnol 97:2433–2441.  https://doi.org/10.1007/s00253-012-4102-4 CrossRefGoogle Scholar
  254. Wang Y, Lim L, Madilao L et al (2014) Gene discovery for enzymes involved in limonene modification or utilization by the mountain pine beetle-associated pathogen Grosmannia clavigera. Appl Environ Microbiol 80:4566–4576.  https://doi.org/10.1128/AEM.00670-14 CrossRefGoogle Scholar
  255. Watabe T, Ozawa N, Ishii H et al (1986) Hepatic microsomal cholesterol epoxide hydrolase: selective inhibition by detergents and separation from xenobiotic epoxide hydrolase. Biochem Biophys Res Commun 140:632–637.  https://doi.org/10.1016/0006-291X(86)90778-3 CrossRefGoogle Scholar
  256. Wei C, Chen Y, Shen H et al (2012) Biocatalytic resolution of benzyl glycidyl ether and its derivates by Talaromyces flavus: effect of phenyl ring substituents on enantioselectivity. Biotechnol Lett 34:1499–1503.  https://doi.org/10.1007/s10529-012-0927-2 CrossRefGoogle Scholar
  257. Weijers CAGM (1997) Enantioselective hydrolysis of aryl, alicyclic and aliphatic epoxides by Rhodotorula glutinis. Tetrahedron: Asymmetry 8:639–647.  https://doi.org/10.1016/S0957-4166(97)00012-8 CrossRefGoogle Scholar
  258. Weijers CAGM, de Bont JAM (1999) Epoxide hydrolases from yeasts and other sources: versatile tools in biocatalysis. J Mol Catal B Enzym 6:199–214.  https://doi.org/10.1016/S1381-1177(98)00123-4 CrossRefGoogle Scholar
  259. Westkaemper RB, Hanzlik RP (1980) A convenient reverse-phase liquid chromatographic for epoxide hydrase. Anal Biochem 67:63–67.  https://doi.org/10.1016/0003-2697(80)90317-6 CrossRefGoogle Scholar
  260. Widersten M, Gurell A, Lindberg D (2010) Structure-function relationships of epoxide hydrolases and their potential use in biocatalysis. Biochim Biophys Acta 1800:316–326.  https://doi.org/10.1016/j.bbagen.2009 CrossRefGoogle Scholar
  261. Wijekoon C, Goodwin P, Hsiang T (2008) The involvement of two epoxide hydrolase genes, NbEH1.1 andNbEH1.2, of Nicotiana benthamiana in the interaction with Colletotrichum destructivum, Colletotrichum orbiculare or Pseudomonas syringae pv. tabaci. Funct Plant Biol 35:1112–1122.  https://doi.org/10.1007/s00299-007-0387-7 CrossRefGoogle Scholar
  262. Wilson K, Walker J (2010) Principles and techniques of biochemistry and molecular biology. 7th, Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511841477 Google Scholar
  263. Wohlgemuth R (2010) Biocatalysis-key to sustainable industrial chemistry. Curr Opin Biotechnol 21:713–724.  https://doi.org/10.1016/j.copbio.2010.09.016 CrossRefGoogle Scholar
  264. Woo J-H, Lee EY (2013) Enantioselective hydrolysis of racemic styrene oxide and its substituted derivatives using newly-isolated Sphingopyxis sp. exhibiting a novel epoxide hydrolase activity. Biotechnol Lett 36:357–362.  https://doi.org/10.1007/s10529-013-1373-5 CrossRefGoogle Scholar
  265. Woo J-H, Hwang Y-O, Kang SG et al (2007) Cloning and characterization of three epoxide hydrolases from a marine bacterium, Erythrobacter litoralis HTCC2594. Appl Microbiol Biotechnol 76:365–375.  https://doi.org/10.1007/s00253-007-1011-z CrossRefGoogle Scholar
  266. Woo J-H, Kang J-H, Kang SG et al (2009) Cloning and characterization of an epoxide hydrolase from Novosphingobium aromaticivorans. Appl Microbiol Biotechnol 82:873–881.  https://doi.org/10.1007/s00253-008-1791-9 CrossRefGoogle Scholar
  267. Woo J-H, Hwang Y-O, Kang J-H et al (2010a) Enantioselective hydrolysis of racemic epichlorohydrin using an epoxide hydrolase from Novosphingobium aromaticivorans. J Biosci Bioeng 110:295–297.  https://doi.org/10.1016/j.jbiosc.2010.02.014 CrossRefGoogle Scholar
  268. Woo J-H, Kang J-H, Hwang Y-O et al (2010b) Biocatalytic resolution of glycidyl phenyl ether using a novel epoxide hydrolase from a marine bacterium, Maritimibacter alkaliphilus KCCM 42376. J Biosci Bioeng 109:539–544.  https://doi.org/10.1016/j.jbiosc.2009 CrossRefGoogle Scholar
  269. Woo J-H, Kang K-M, Kwon T-H et al (2015) Isolation, identification and characterization of marine bacteria exhibiting complementary enantioselective epoxide hydrolase activity for preparing chiral chlorinated styrene oxide derivatives. J Ind Eng Chem 28:225–228.  https://doi.org/10.1016/j.jiec.2015.02.018 CrossRefGoogle Scholar
  270. Wu J, Liu C, Jiang Y et al (2010) Synthesis of chiral epichlorohydrin by chloroperoxidase-catalyzed epoxidation of 3-chloropropene in the presence of an ionic liquid as co-solvent. Catal Commun 11:727–731.  https://doi.org/10.1016/j.catcom.2010.02.003 CrossRefGoogle Scholar
  271. Wu S, Li A, Chin YS, Li Z (2013) Enantioselective hydrolysis of racemic and meso-epoxides with recombinant Escherichia coli expressing epoxide hydrolase from Sphingomonas sp. HXN-200: preparation of epoxides and vicinal diols in high ee and high concentration. ACS Catal 3:752–759.  https://doi.org/10.1021/cs300804v CrossRefGoogle Scholar
  272. Wu S, Chen Y, Xu Y et al (2014) Enantioselective trans-dihydroxylation of aryl olefins by cascade biocatalysis with recombinant Escherichia coli coexpressing monooxygenase and epoxide hydrolase. ACS Catal 4:409–420.  https://doi.org/10.1021/cs400992z CrossRefGoogle Scholar
  273. Wu K, Wang H, Sun H, Wei D (2015a) Efficient kinetic resolution of phenyl glycidyl ether by a novel epoxide hydrolase from Tsukamurella paurometabola. Appl Microbiol Biotechnol 99:9511–9521.  https://doi.org/10.1007/s00253-015-6716-9 CrossRefGoogle Scholar
  274. Wu Y, Kong X, Zhu Q et al (2015b) Chemoenzymatic enantioconvergent hydrolysis of p-nitrostyrene oxide into (R)-p-nitrophenyl glycol by a newly cloned epoxide hydrolase VrEH2 from Vigna radiata. Catal Commun 58:16–20.  https://doi.org/10.1016/j.catcom.2014.08.020 CrossRefGoogle Scholar
  275. Wu K, Chen L, Fan H et al (2016) Synthesis of enantiopure epoxide by “ one pot ” chemoenzymatic approach using a highly enantioselective dehydrogenase. Tetrahedron Lett 57:899–904.  https://doi.org/10.1016/j.tetlet.2016.01.048 CrossRefGoogle Scholar
  276. Xin J, Xu N, Ji S, et al (2017) Epoxidation of ethylene by whole cell suspension of Methylosinus trichosporium IMV 3011.  https://doi.org/10.1155/2017/9191382 CrossRefGoogle Scholar

Research Article

  1. Xu J, Morisseau C, Hammock BD (2014) Expression and characterization of an epoxide hydrolase from Anopheles gambiae with high activity on epoxy fatty acids. Insect Biochem Mol Biol 54:42–52.  https://doi.org/10.1016/j.ibmb.2014.08.004 CrossRefGoogle Scholar
  2. Xu J, Morisseau C, Yang J et al (2015) Epoxide hydrolase activities and epoxy fatty acids in the mosquito Culex quinquefasciatus. Insect Biochem Mol Biol 59:41–49.  https://doi.org/10.1016/j.ibmb.2015.02.004 CrossRefGoogle Scholar
  3. Xue F, Liu Z-Q, Zou S-P et al (2014) A novel enantioselective epoxide hydrolase from Agromyces mediolanus ZJB120203: cloning, characterization and application. Process Biochem 49:409–417.  https://doi.org/10.1016/j.procbio.2014.01.003 CrossRefGoogle Scholar
  4. Xue F, Liu Z-Q, Wan N-W et al (2015a) Engineering the epoxide hydrolase from Agromyces mediolanus for enhanced enantioselectivity and activity in the kinetic resolution of racemic epichlorohydrin. RSC Adv 5:31525–31532.  https://doi.org/10.1039/C5RA02492G CrossRefGoogle Scholar
  5. Xue F, Liu Z, Wang Y et al (2015b) Biochemical characterization and biosynthetic application of a halohydrin dehalogenase from Tistrella mobilis ZJB1405. J Mol Catal B Enzym 115:105–112.  https://doi.org/10.1016/j.molcatb.2015.02.008 CrossRefGoogle Scholar
  6. Yamada T, Morisseau C, Maxwell JE et al (2000) Biochemical evidence for the involvement of tyrosine in epoxide activation during the catalytic cycle of epoxide hydrolase. J Biol Chem 275:23082–23088.  https://doi.org/10.1074/jbc.M001464200 CrossRefGoogle Scholar
  7. Yeates CA, van Dyk MS, Botes AL et al (2003) Biocatalysis of nitro substituted styrene oxides by non-conventional yeasts. Biotechnol Lett 25:675–680.  https://doi.org/10.1023/A:1023427305388 CrossRefGoogle Scholar
  8. Yu C-Y, Li X-F, Lou W-Y, Zong M-H (2013) Cross-linked enzyme aggregates of Mung bean epoxide hydrolases: a highly active, stable and recyclable biocatalyst for asymmetric hydrolysis of epoxides. J Biotechnol 166:12–19.  https://doi.org/10.1016/j.jbiotec.2013.04.015 CrossRefGoogle Scholar
  9. Yun J, Ryu S (2005) Screening for novel enzymes from metagenome and SIGEX, as a way to improve it. Microb Cell Fact 4:8.  https://doi.org/10.1186/1475-2859-4-8 CrossRefGoogle Scholar
  10. Zhang W, Loebach JL, Wilson SR, Jacobsen EN (1990) Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes. J Am Chem Soc 112:2801–2803.  https://doi.org/10.1021/ja00163a052 CrossRefGoogle Scholar
  11. Zhang Q-R, Xu W-H, Chen F-S, Li S (2005) Molecular and biochemical characterization of juvenile hormone epoxide hydrolase from the silkworm, Bombyx mori. Insect Biochem Mol Biol 35:153–164.  https://doi.org/10.1016/j.ibmb.2004.10.010 CrossRefGoogle Scholar
  12. Zhang Z, Sheng Y, Jiang K et al (2010) Bio-resolution of glycidyl (o, m, p)-methylphenyl ethers by Bacillus megaterium. Biotechnol Lett 32:513–516.  https://doi.org/10.1007/s10529-009-0181-4 CrossRefGoogle Scholar
  13. Zhu Q, Von DP, Xing W, Levy D (1999) Membrane topology and cell surface targeting of microsomal epoxide hydrolase. Evidence for multiple topological orientations. J Biol Chem 274:27898–27904.  https://doi.org/10.1074/jbc.274.39.27898 CrossRefGoogle Scholar
  14. Zocher F, Enzelberger MM, Bornscheuer UT et al (1999) A colorimetric assay suitable for screening epoxide hydrolase activity. Anal Chim Acta 391:345–351.  https://doi.org/10.1016/S0003-2670(99)00216-0 CrossRefGoogle Scholar
  15. Zocher F, Enzelberger MM, Bornscheuer UT et al (2000) Epoxide hydrolase activity of Streptomyces strains. J Biotechnol 77:287–292.  https://doi.org/10.1016/S0168-1656(99)00225-4 CrossRefGoogle Scholar
  16. Zou J, Hallberg BM, Bergfors T et al (2000) Structure of Aspergillus niger epoxide hydrolase at 1.8 Å resolution: implications for the structure and function of the mammalian microsomal class of epoxide hydrolases. Structure 8:111–122.  https://doi.org/10.1016/S0969-2126(00)00087-3 CrossRefGoogle Scholar
  17. Zucoloto B, Drumond V, Maia V et al (2016) Enzymatic potential of heterotrophic bacteria from a neutral copper mine drainage. Brazilian J Microbiol 47:846–852.  https://doi.org/10.1016/j.bjm.2016.07.004 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiochemistryPanjab UniversityChandigarhIndia

Personalised recommendations