Advertisement

A Novel Multiple Distances Based Dynamic Time Warping Method for Online Signature Verification

  • Xinyi Lu
  • Yuxun Fang
  • Qiuxia Wu
  • Junhong Zhao
  • Wenxiong Kang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10996)

Abstract

In this paper, a novel Multiple Distances Based Dynamic Time Warping (MDB-DTW) method is proposed for signature verification. In order to obtain more discriminative and complementary information, we take accounts of the multiple distance measurements on the Euclidian distance based DTW path. In addition, two classifiers (SVM-based classifier and PCA-based classifier) are adopted to fuse the useful information and remove the noise from the multiple dissimilarity vector space. The comprehensive experiments have conducted on three publicly accessible datasets MCYT-100, SUSIG and SVC-task2 with the obtained EER results are 1.87%, 1.28% and 6.32% respectively, which further demonstrates the robust and effectiveness of our proposed MDB-DTW method.

Keywords

Online signature verification Multiple distance measurements Dynamic time warping Biometrics 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61573151 and 61503141), the Guangdong Natural Science Foundation (No. 2016A030313468), Science and Technology Planning Project of Guangdong Province (No. 2017A010101026).

References

  1. 1.
    Tolosana, R., et al.: Exploring recurrent neural networks for on-line handwritten signature biometrics. IEEE Access 6, 5128–5138 (2018)CrossRefGoogle Scholar
  2. 2.
    Fang, Y., et al.: A novel video-based system for in-air signature verification. Comput. Electr. Eng. 57, 1–14 (2017)CrossRefGoogle Scholar
  3. 3.
    Ahrabian, K., Babaali, B.: On usage of autoencoders and siamese networks for online handwritten signature verification. arXiv preprint arXiv:1712.02781 (2017)
  4. 4.
    Lu, X., Fang, Y., Kang, W., Wang, Z., Feng, D.D.: SCUT-MMSIG: a multimodal online signature database. In: Zhou, J., et al. (eds.) CCBR 2017. LNCS, vol. 10568, pp. 729–738. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69923-3_78CrossRefGoogle Scholar
  5. 5.
    Zhang, Z., Wang, K., Wang, Y.: A survey of on-line signature verification. In: Sun, Z., Lai, J., Chen, X., Tan, T. (eds.) CCBR 2011. LNCS, vol. 7098, pp. 141–149. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25449-9_18CrossRefGoogle Scholar
  6. 6.
    Fierrez, J., et al.: HMM-based on-line signature verification: Feature extraction and signature modeling. Pattern Recogn. Lett. 28(16), 2325–2334 (2007)CrossRefGoogle Scholar
  7. 7.
    Fischer, A., et al.: Robust score normalization for DTW-based on-line signature verification. In: International Conference on Document Analysis and Recognition (2015)Google Scholar
  8. 8.
    Kholmatov, A., Yanikoglu, B.: Identity authentication using improved online signature verification method. Pattern Recogn. Lett. 26(15), 2400–2408 (2005)CrossRefGoogle Scholar
  9. 9.
    Sharma, A., Sundaram, S.: On the exploration of information from the DTW cost matrix for online signature verification. IEEE Trans. Cybern. 48, 611–624 (2017)CrossRefGoogle Scholar
  10. 10.
    Sharma, A., Sundaram, S.: A novel online signature verification system based on GMM features in a DTW framework. IEEE Trans. Inf. Forensics Secur. 12, 705–718 (2017)CrossRefGoogle Scholar
  11. 11.
    Chan, T.H., et al.: PCANet: a simple deep learning baseline for image classification? IEEE Trans. Image Process. 24(12), 5017 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Tang, L., Kang, W., Fang, Y.: Information divergence-based matching strategy for online signature verification. IEEE Trans. Inf. Forensics Secur. 13(4), 861–873 (2018)CrossRefGoogle Scholar
  13. 13.
    Ortega-Garcia, J., et al.: MCYT baseline corpus: a bimodal biometric database. IEE Proc. Vis. Image Sig. Process. 150(6), 395–401 (2003)CrossRefGoogle Scholar
  14. 14.
    Kholmatov, A., Yanikoglu, B.: SUSIG: an on-line signature database, associated protocols and benchmark results. Pattern Anal. Appl. 12(3), 227–236 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Yeung, D.-Y., et al.: SVC2004: first international signature verification competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 16–22. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-25948-0_3CrossRefGoogle Scholar
  16. 16.
    Liu, Y., Yang, Z., Yang, L.: Online signature verification based on DCT and sparse representation. IEEE Trans. Cybern. 45(11), 2498–2511 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Xinyi Lu
    • 1
  • Yuxun Fang
    • 1
  • Qiuxia Wu
    • 2
  • Junhong Zhao
    • 1
  • Wenxiong Kang
    • 1
  1. 1.School of Automation Science and EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.School of Software EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations