Advertisement

An Automated Brain Tumor Segmentation Framework Using Multimodal MRI

  • Haifeng Zhao
  • Shuhai Chen
  • Shaojie Zhang
  • Siqi Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10996)

Abstract

An automated region of interest (ROI) segmentation framework is proposed for edema detection and brain tumor segmentation from brain magnetic resonance images (MRI). In order to further improve the accuracy of the framework, multimodal MRI data are applied in this framework. The framework mainly contains three stages. First the cluster algorithm and morphological operation are used for detecting the abnormal tissue i.e. edema so as to automatically initialize the level set method. Then edge-based level set method combining regional information is used for edema segmentation from Fluid Attenuated Inversion Recovery (FLAIR) MRI. The final segmentation result of brain tumor is obtained by using the cluster method, filling algorithm and opening (morphology) operation at T1 contrast-enhanced (T1c) MRI. The experiments are carried out on two modalities MRI slices of 8 true patients, which have the matching ground truth of the edema and tumor. Experimental results demonstrate the effectiveness of our algorithm.

Keywords

Level set Brain tumor Image segmentation MRI 

Notes

Acknowledgments

The Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (NO. 48, 2014-1685), the Key Natural Science Project of Anhui Provincial Education Department (KJ2017A016).

References

  1. 1.
    Pal, N.R., Pal, S.K.: A review on image segmentation techniques. J. Patt. Recogn. 26(9), 1277–1294 (1993)CrossRefGoogle Scholar
  2. 2.
    Banerjee, S., Mitra, S., Shankar, B.U.: Single seed delineation of brain tumor using multi-thresholding. J. Inf. Sci. 330, 88–103 (2016)CrossRefGoogle Scholar
  3. 3.
    Zhu, S.C., Yuille, A.: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. J. IEEE Trans. Patt. Anal. Mach. Intell. 18(9), 884–900 (1996)CrossRefGoogle Scholar
  4. 4.
    Gong, M., Liang, Y., Shi, J., et al.: Fuzzy c-means clustering with local information and kernel metric for image segmentation. J. IEEE Trans. Image Process. 22(2), 573–584 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Senthilkumaran, N., Rajesh, R.: Edge detection techniques for image segmentation–a survey of soft computing approaches. Int. J. Recent Trends Eng. 1(2), 250–254 (2009)Google Scholar
  6. 6.
    Ilunga-Mbuyamba, E., Avina-Cervantes, J.G., Garcia-Perez, A., et al.: Localized active contour model with background intensity compensation applied on automatic MR brain tumor segmentation. J. Neurocomput. 220, 84–97 (2017)CrossRefGoogle Scholar
  7. 7.
    Li, C., Xu, C., Gui, C., et al.: Distance regularized level set evolution and its application to image segmentation. J. IEEE Trans. Image Process. 19(12), 3243–3254 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Pratondo, A., Chui, C.K., Ong, S.H.: Robust edge-stop functions for edge-based active contour models in medical image segmentation. J. IEEE Sig. Process. Lett. 23(2), 222–226 (2016)CrossRefGoogle Scholar
  9. 9.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)CrossRefGoogle Scholar
  10. 10.
    Chan, T.F., Vese, L.A.: Active contours without edges. J. IEEE Trans. Image Process. 10(2), 266–277 (2001)CrossRefGoogle Scholar
  11. 11.
    Lankton, S., Tannenbaum, A.: Localizing region-based active contours. J. IEEE Trans. Image Process. 17(11), 2029–2039 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Li, C., Xu, C., Konwar, K.M., et al.: Fast distance preserving level set evolution for medical image segmentation. In: 2006 9th International Conference on Control, Automation, Robotics and Vision, ICARCV 2006, pp. 1–7. IEEE Press, Singapore (2006)Google Scholar
  13. 13.
    Li, C., Kao, C.Y., Gore, J.C., et al.: Minimization of region-scalable fitting energy for image segmentation. J. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yang, X., Gao, X., Tao, D., et al.: An efficient MRF embedded level set method for image segmentation. J. IEEE Trans. Image Process. 24(1), 9–21 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Spencer, A.: Morphological Theory: An Introduction to Word Structure in Generative Grammar. Wiley-Blackwell (1991)Google Scholar
  16. 16.
  17. 17.
    Li, Y., Jia, F., Qin, J.: Brain tumor segmentation from multimodal magnetic resonance images via sparse representation. J. Artif. Intell. Med. 73, 1–13 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Haifeng Zhao
    • 1
    • 2
  • Shuhai Chen
    • 1
    • 3
  • Shaojie Zhang
    • 1
    • 2
  • Siqi Wang
    • 1
  1. 1.Key Lab of Intelligent Computing and Signal Processing of MOE and School of Computer and TechnologyAnhui UniversityHefeiPeople’s Republic of China
  2. 2.Key Lab of Industrial Image Processing and Analysis of Anhui ProvinceHefeiPeople’s Republic of China
  3. 3.Anhui UniversityHefei CityChina

Personalised recommendations