Advertisement

Efficient Near-Infrared Eye Detection Utilizing Appearance Features

  • Qi Wang
  • Ying Lian
  • Ting Sun
  • Yuna Chu
  • Xiangde Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10996)

Abstract

Eye detection has been a critical problem for iris recognition, face recognition and some other applications. However, the unconstrained scene brings a lot of challenging problems to eye detection such as occlusion, rotation, blur and complex background etc. In this paper, we propose a novel eye detection algorithm for near-infrared image. We put forward four factors, which are IVSF, PLG, DRDF and IOSF to represent eye region features. The method is mainly composed of two steps. Firstly, candidate positions are generated. Secondly, a multi-strategy fusion method is designed to confirm final eye position. The experimental results demonstrate that the proposed algorithm is accurate and fast compared with some existing methods.

Keywords

Eye detection Unconstrained scene Near-infrared face image Multi-strategy fusion 

Notes

Acknowledgement

This research is supported by National Natural Science Funds of China, No. 61703088, the Doctoral Scientific Research Foundation of Liaoning Province, No. 20170520326 and “the Fundamental Research Funds for the Central Universities”, N160503003.

References

  1. 1.
    Daugman, J.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 15(1), 1148–1161 (1993)CrossRefGoogle Scholar
  2. 2.
    Singh, A.K., Joshi, P., Nandi, G.C.: Face recognition with liveness detection using eye and mouth movement. In: International Conference on Signal Propagation and Computer Technology, pp. 592–597 (2014)Google Scholar
  3. 3.
    Zhu, Z., Ji, Q.: Robust real-time eye detection and tracking under variable lighting conditions and various face orientations. Comput. Vis. Image Underst. 98(1), 124–154 (2005)CrossRefGoogle Scholar
  4. 4.
    Gou, C., Wu, Y., Wang, K., Wang, K., Wang, F.Y., Ji, Q.: A joint cascaded framework for simultaneous eye detection and eye state estimation. Pattern Recogn. 67(1), 23–31 (2017)CrossRefGoogle Scholar
  5. 5.
    Mandal, B., Li, L., Wang, G., Lin, J.: Towards detection of bus driver fatigue based on robust visual analysis of eye state. IEEE Trans. Intell. Transp. Syst. 18(1), 1–13 (2017)CrossRefGoogle Scholar
  6. 6.
    Wang, P., Green, M.B., Ji, Q., Wayman, J.: Automatic eye detection and its validation. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. Workshops 3(1), 164 (2006)Google Scholar
  7. 7.
    Sirohey, S.A., Rosenfeld, A.: Eye detection in a face image using linear and nonlinear filters. Pattern Recogn. 34(7), 1367–1391 (2001)CrossRefGoogle Scholar
  8. 8.
    Song, J., Chi, Z., Liu, J.: A robust eye detection method using combined binary edge and intensity information. Pattern Recogn. 39(6), 1110–1125 (2006)CrossRefGoogle Scholar
  9. 9.
    Peng, K.: A robust algorithm for eye detection on gray intensiry face without spectacles. J. Comput. Sci. Technol. 5(3), 127–132 (2005)MathSciNetGoogle Scholar
  10. 10.
    Cootes, T.F., Taylor, C.J., Cooper, D.H.: Active shape models-their trainingand application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  11. 11.
    Dieckmann, U., Plankensteiner, P., Schamburger, R., Fröba, B., Meller, S.: SESAM: a biometric person identification system using sensor fusion. In: Bigün, J., Chollet, G., Borgefors, G. (eds.) AVBPA 1997. LNCS, vol. 1206, pp. 301–310. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0016009CrossRefGoogle Scholar
  12. 12.
    Sobottka, K., Pitas, I.: A fully automatic approach to facial feature detection and tracking. In: Bigün, J., Chollet, G., Borgefors, G. (eds.) AVBPA 1997. LNCS, vol. 1206, pp. 77–84. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0015982CrossRefGoogle Scholar
  13. 13.
    Zhou, Z.H., Geng, X.: Projection functions for eye detection. Pattern Recogn. 37(5), 1049–1056 (2004)CrossRefGoogle Scholar
  14. 14.
    Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. Proc. IEEE Int. Conf. Comput. Vis. Pattern Recogn. 1(2), 511–518 (2001)Google Scholar
  15. 15.
    Loy, G., Zelinsky, A.: Fast radial symmetry for detecting points of interest. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 959–973 (2003)CrossRefGoogle Scholar
  16. 16.
    Jung, Y., Kim, D., Son, B., Kim, J.: An eye detection method robust to eyeglasses for mobile iris recognition. Expert Syst. Appl. Int. J. 67(C), 178–188 (2017)CrossRefGoogle Scholar
  17. 17.
    Chen, S., Liu, C.: Eye detection using discriminatory haar features and a new efficient SVM. Image Vis. Comput. 33(1), 68–77 (2015)CrossRefGoogle Scholar
  18. 18.
    Zhang, L., Lenders, P.: Knowledge-based eye detection for human face recognition. Int. Conf. Knowl. Based Intell. Eng. Syst. Allied Technol. 1(1), 117–120 (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Qi Wang
    • 1
  • Ying Lian
    • 1
  • Ting Sun
    • 1
  • Yuna Chu
    • 1
  • Xiangde Zhang
    • 1
  1. 1.College of Sciences, Northeastern UniversityShenyangChina

Personalised recommendations