Advertisement

Face Clustering Utilizing Scalable Sparse Subspace Clustering and the Image Gradient Feature Descriptor

  • Mingkang Liu
  • Qi Li
  • Zhenan Sun
  • Qiyao Deng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10996)

Abstract

Face clustering is an important topic in computer vision. It aims to put together facial images that belong to the same person. Spectral clustering-based algorithms are often used for accurate face clustering. However, a big occlusion matrix is usually needed to deal with the noise and sparse outlying terms, which makes the sparse coding process computationally expensive. Thus spectral clustering-based algorithms are difficult to extend to large scale datasets. In this paper, we use the image gradient feature descriptor and scalable Sparse Subspace Clustering algorithm for large scale and high accuracy face clustering. Within the image gradient feature descriptor, the scalable Sparse Subspace Clustering algorithm can be used in large scale face datasets without sacrificing clustering performance. Experimental results show that our algorithm is robust to illumination, occlusion, and achieves a relatively high clustering accuracy on the Extended Yale B and AR datasets.

Keywords

Face clustering Scalable sparse subspace clustering Image gradient feature descriptor 

References

  1. 1.
    Vretos, N., Solachidis, V., Pitas, I.: A mutual information based face clustering algorithm for movie content analysis. Image Vis. Comput. 29(10), 693–705 (2011)CrossRefGoogle Scholar
  2. 2.
    Wu, B., Zhang, Y., Hu, B.-G., Ji, Q.: Constrained clustering and its application to face clustering in videos. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3507–3514 (2013)Google Scholar
  3. 3.
    Xiao, S., Tan, M., Xu, D.: Weighted block-sparse low rank representation for face clustering in videos. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 123–138. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10599-4_9CrossRefGoogle Scholar
  4. 4.
    Ren, J., Zhao, S., Yang, K., Zhao, B.N.: A novel and robust face clustering method via adaptive difference dictionary, pp. 627–632 (2017)Google Scholar
  5. 5.
    Shi, Y., Otto, C., Jain, A.K.: Face clustering: representation and pairwise constraints. IEEE Trans. Inf. Forensics Secur. 13(7), 1626–1640 (2018)CrossRefGoogle Scholar
  6. 6.
    You, C., Robinson, D.P., Vidal, R.: Scalable sparse subspace clustering by orthogonal matching pursuit, pp. 3918–3927 (2017)Google Scholar
  7. 7.
    Javed, S., Mahmood, A., Bouwmans, T., Jung, S.K.: Backgroundcforeground modeling based on spatiotemporal sparse subspace clustering. IEEE Trans. Image Process. 26(12), 5840–5854 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Song, T., Xin, L., Gao, C., Zhang, G., Zhang, T.: Grayscale-inversion and rotation invariant texture description using sorted local gradient pattern. IEEE Signal Process. Lett. 25(5), 625–629 (2018)CrossRefGoogle Scholar
  9. 9.
    Jurio, A., Paternain, D., Fernandez, J., De Miguel, L., Bustince, H.: Image in painting using colour and gradient features. In: Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems, pp. 1–6 (2017)Google Scholar
  10. 10.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)CrossRefGoogle Scholar
  11. 11.
    Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)CrossRefGoogle Scholar
  12. 12.
    Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2790–2797 (2009)Google Scholar
  13. 13.
    Liu, G., Yan, S.: Latent low-rank representation for subspace segmentation and feature extraction. In: IEEE International Conference on Computer Vision, pp. 1615–1622 (2011)Google Scholar
  14. 14.
    Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)CrossRefGoogle Scholar
  15. 15.
    Favaro, P., Vidal, R., Ravichandran, A.: A closed form solution to robust subspace estimation and clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1801–1807 (2011)Google Scholar
  16. 16.
    Lu, C.-Y., Min, H., Zhao, Z.-Q., Zhu, L., Huang, D.-S., Yan, S.: Robust and efficient subspace segmentation via least squares regression. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 347–360. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33786-4_26CrossRefGoogle Scholar
  17. 17.
    Patel, V.M., Van Nguyen, H., Vidal, R.: Latent space sparse subspace clustering. In: IEEE International Conference on Computer Vision, pp. 225–232 (2013)Google Scholar
  18. 18.
    Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Sparse representations of image gradient orientations for visual recognition and tracking. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 26–33 (2011)Google Scholar
  19. 19.
    Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Robust and efficient parametric face alignment. In: EEE International Conference on Computer Vision, pp. 1847–1854 (2011)Google Scholar
  20. 20.
    Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Subspace learning from image gradient orientations. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2454–2466 (2012)CrossRefGoogle Scholar
  21. 21.
    Cootes, T., Taylor, C.: On representing edge structure for model matching. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1114–1119 (2001)Google Scholar
  22. 22.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)CrossRefGoogle Scholar
  23. 23.
    Georghiades, A.S., Belhumeur, P.N., Kriegman, D.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)CrossRefGoogle Scholar
  24. 24.
    Lee, K.-C., Ho, J., Kriegman, D.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)CrossRefGoogle Scholar
  25. 25.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)CrossRefGoogle Scholar
  26. 26.
    Heikkil, M., Ahonen, T.: A general local binary pattern (lbp) implementation for matlab. http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab/
  27. 27.
    Liu, C., Wechsler, H.: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans. Image Process. 11(4), 467–476 (2002)CrossRefGoogle Scholar
  28. 28.
    Yang, M., Zhang, L.: Gabor feature based sparse representation for face recognition with gabor occlusion dictionary. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 448–461. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15567-3_33CrossRefGoogle Scholar
  29. 29.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 886–893 (2005)Google Scholar
  30. 30.
    Dollár, P.: Piotr’s Image and Video Matlab Toolbox (PMT). http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
  31. 31.
    Lu, C., Tang, J., Lin, M., Lin, L., Yan, S., Lin, Z.: Correntropy induced l2 graph for robust subspace clustering. In: IEEE International Conference on Computer Vision, pp. 1801–1808Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Center for Research on Intelligent Perception and Computing (CRIPAC)BeijingChina
  2. 2.National Laboratory of Pattern Recognition (NLPR)BeijingChina
  3. 3.Institute of Automation, Chinese Academy of Sciences (CASIA)BeijingChina
  4. 4.Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), CASBeijingChina

Personalised recommendations