Face Expression Recognition Using Gabor Features and a Novel Weber Local Descriptor

  • Jucheng YangEmail author
  • Meng Li
  • Lingchao Zhang
  • Shujie Han
  • Xiaojing Wang
  • Jie Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10996)


This paper presents a novel fusion approach for facial expression recognition. The novelty of this paper lies in: (i) Gabor wavelets are introduced for image representation, which describes well local spatial scale characteristics and orientation selectivity of image textures. Gabor features are robust to variations due to illumination and noise. Furthermore, we reduce the dimensionality of Gabor feature vector, in order to reduce computation cost and improve discriminative power for feature extraction. (ii) The paper proposes Multi-orientation Symmetric Local Graph Structure (MSLGS) to calculate feature value for replacing differential excitation of Weber Local Descriptor (WLD), which captures more discriminative local images details. The orientation of original WLD also is extended by bringing more gradient direction, thus it can obtain more precise image description to spatial structure information. The comparative experimental results illustrated that the algorithm could achieve a superior performance with high accuracy.


Facial expression recognition Gabor feature infusion Weber Local Descriptor Multi-orientation Symmetric Local Graph Structure ROC curve 



This paper was supported by the National Natural Science Foundation of China under Grant No. 61502338, No. 61502339 and No. 61702367.


  1. 1.
    Goyal, S.J., Upadhyay, A.K., Jadon, R.S., Goyal, R.: Real-life facial expression recognition systems: a review. In: Satapathy, S.C., Bhateja, V., Das, S. (eds.) Smart Computing and Informatics. SIST, vol. 77, pp. 311–331. Springer, Singapore (2018). Scholar
  2. 2.
    Fernandes, J.D.A., Matos, L.N., Aragão, M.G.D.S.: Geometrical approaches for facial expression recognition using support vector machines. In: 29th SIBGRAPI Conference on Graphics, Patterns and Images, pp. 347–354. IEEE Press (2017)Google Scholar
  3. 3.
  4. 4.
    Abusham, E.E.A., Bashir, H.K.: Face recognition using local graph structure (LGS). In: Jacko, J.A. (ed.) HCI 2011. LNCS, vol. 6762, pp. 169–175. Springer, Heidelberg (2011). Scholar
  5. 5.
    Abdullah, M.F.A., Sayeed, M.S., Muthu, K.S., et al.: Face recognition with symmetric local graph structure (SLGS). Expert Syst. Appl. 41(14), 6131–6137 (2014)CrossRefGoogle Scholar
  6. 6.
    Tao, G., Zhao, X., Chen, T., et al.: Image feature representation with orthogonal symmetric local weber graph structure. Neurocomputing 240, 70–83 (2017)CrossRefGoogle Scholar
  7. 7.
    Chen, J., Shan, S., He, C., et al.: WLD: a robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1705–1720 (2010)CrossRefGoogle Scholar
  8. 8.
    Fang, S., Yang, J., Liu, N., Chen, Y.: Weber local gradient pattern (WLGP) method for face recognition. Biometric Recognition. LNCS, vol. 9428, pp. 186–192. Springer, Cham (2015). Scholar
  9. 9.
    Fang, S., Yang, J., Liu, N., et al.: Face recognition using weber local circle gradient pattern method. Multimedia Tools Appl. 77(12), 1–16 (2017)Google Scholar
  10. 10.
    The Japanese Female Facial Expression Database.
  11. 11.
    Cohn-Kanade (CK and CK+) database.

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jucheng Yang
    • 1
    Email author
  • Meng Li
    • 1
  • Lingchao Zhang
    • 1
  • Shujie Han
    • 1
  • Xiaojing Wang
    • 1
  • Jie Wang
    • 1
  1. 1.College of Computer Science and Information EngineeringTianjin University of Science and TechnologyTianjinChina

Personalised recommendations