Advertisement

Enhanced Archive for SHADE

  • Adam Viktorin
  • Roman Senkerik
  • Michal Pluhacek
  • Tomas Kadavy
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 837)

Abstract

This research paper analyses an external archive of inferior solutions used in Success-History based Adaptive Differential Evolution (SHADE) and its variant with a linear decrease in population size L-SHADE. A novel implementation of an archive is proposed and compared to the original one on CEC2015 benchmark set of test functions for two distinctive dimensionality settings. The proposed archive implementation is referred to as Enhanced Archive (EA) and therefore two Differential Evolution (DE) variants are titled EA-SHADE and EA-L-SHADE. The results on CEC2015 benchmark set are analyzed and discussed.

Keywords

Differential Evolution External archive JADE SHADE L-SHADE 

Notes

Acknowledgements

This work was supported by Grant Agency of the Czech Republic – GACR P103/15/06700S, further by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme Project no. LO1303 (MSMT-7778/2014). Also by the European Regional Development Fund under the Project CEBIA-Tech no. CZ.1.05/2.1.00/03.0089 and by Internal Grant Agency of Tomas Bata University under the Projects no. IGA/CebiaTech/2017/004.

References

  1. 1.
    Storn, R., Price, K.: Differential Evolution-A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces, vol. 3. ICSI, Berkeley (1995)zbMATHGoogle Scholar
  2. 2.
    Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental analysis. Artif. Intell. Rev. 33(1–2), 61–106 (2010)CrossRefGoogle Scholar
  3. 3.
    Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. Evol. Comput. IEEE Trans. 15(1), 4–31 (2011)CrossRefGoogle Scholar
  4. 4.
    Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution–an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)CrossRefGoogle Scholar
  5. 5.
    Brest, J., Greiner, S., Bošković, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. Evol. Comput. IEEE Trans. 10(6), 646–657 (2006)CrossRefGoogle Scholar
  6. 6.
    Omran, M.G., Salman, A., Engelbrecht, A.P.: Self-adaptive differential evolution. In: Computational Intelligence and Security, pp. 192–199. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. Evol. Comput. IEEE Trans. 13(2), 398–417 (2009)CrossRefGoogle Scholar
  8. 8.
    Islam, S.M., Das, S., Ghosh, S., Roy, S., Suganthan, P.N.: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 482–500 (2012)CrossRefGoogle Scholar
  9. 9.
    Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. Evol. Comput. IEEE Trans. 13(5), 945–958 (2009)CrossRefGoogle Scholar
  10. 10.
    Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differential evolution. In: IEEE Congress on 2013 Evolutionary Computation (CEC), pp. 71–78. IEEE, June 2013Google Scholar
  11. 11.
    Liang, J.J., Qu, B.Y., Suganthan, P.N., Hernández-Díaz, A.G.: Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical report, 201212 (2013)Google Scholar
  12. 12.
    Tanabe, R., Fukunaga, A.S.: Improving the search performance of SHADE using linear population size reduction. In: IEEE Congress on 2014 Evolutionary Computation (CEC), pp. 1658–1665. IEEE, 2014 JulyGoogle Scholar
  13. 13.
    Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical report, Nanyang Technological University, Singapore (2013)Google Scholar
  14. 14.
    Liang, J.J., Qu, B.Y., Suganthan, P.N., Chen, Q.: Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. Technical report 201411A, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical report, Nanyang Technological University, Singapore (2014)Google Scholar
  15. 15.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. Evol. Comput. IEEE Trans. 1(1), 67–82 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Adam Viktorin
    • 1
  • Roman Senkerik
    • 1
  • Michal Pluhacek
    • 1
  • Tomas Kadavy
    • 1
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations