Advertisement

Emergent Phenomena in Complex Systems

  • Jiri Bila
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 837)

Abstract

The paper turns attention to opinion of Robert Laughlin (Nobel Prize laureate) saying that “Emergence is an organization principle”. There are recapitulated our recent results in the field of emergence phenomena in Complex systems and especially the detection of emergent situation indicating violations of structural invariants. The paper moves in the border between physics and cybernetics with rich references to special fields of mathematics. A lot of concepts and approaches are original ones and open the space for novel ways of the basic research.

Keywords

Emergent phenomena Structural invariants Detection of emergent situation Violation of structural invariants 

Notes

Acknowledgment

This research has been supported by means of SGS17/P2301/OHK2-015. This support is very gratefully acknowledged.

References

  1. 1.
    Laughlin, R.B.: A Different Universe (Reinventing Physics from the Bottom Down). Basic Books, New York (2006)Google Scholar
  2. 2.
    Grolle, J., Schmundt, H., Laughlin, R.B.: Der Urknall ist nur Marketing. Der Spiegel (1) (2008)Google Scholar
  3. 3.
    Nills, H.P.: Supersymmetry, supergravity and particles physics. Phys. Rep. (Rev. Sect. Phys. Lett.) 110(1–2), 1–162 (1984)Google Scholar
  4. 4.
    Haken, H., Wagner, M.: Cooperative Phenomena. Springer, Heidelberg (1973)CrossRefGoogle Scholar
  5. 5.
    Navarro, I., Matia, F.: A survey of collective movement of mobile robots. Int. J. Adv. Rob. Syst. 10, 1–9 (2013)CrossRefGoogle Scholar
  6. 6.
    Bila, J.: Processing of emergent phenomena in complex systems. Int. J. Enhanc. Res. Sci. Technol. Eng. 3(7), 1–17 (2014)CrossRefGoogle Scholar
  7. 7.
    Bila, J.: Emergent phenomena in natural complex systems. In: Synaiei, A., et al. (eds.) Proceedings of Interdisciplinary Symposium of Complex Systems, ISCS 2014. Emergence, Computation and Complex Systems, vol. 8, pp. 89–100. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Bila, J., Mironovova, M., Rodríguez, R., Jura, J.: Detection of emergent situations in complex systems by violations of structural invariants on algebras of transformations. Int. J. Enhanc. Res. Sci. Technol. Eng. 4(9), 38–46 (2015)Google Scholar
  9. 9.
    Bila, J.: The detection of emergent situations by structural invariants. In: Matousek, R. (ed.) Proceedings of 17th International Conference on Soft Computing, MENDEL 2011, MENDEL, vol. 17, pp. 534–539. Brno University of Technology, VUT Press, Brno (2011)Google Scholar
  10. 10.
    Bila, J.: The syntheses of technological materials as emergences in complex systems. In: Matousek, R. (ed.) Proceedings of 20th International Conference on Soft Computing, MENDEL 2014, pp. 305–310. Brno University of Technology, VUT Press, Brno (2014)Google Scholar
  11. 11.
    Reshak, A.H., Khan, S.A., Kamarudin, H., Bila, J.: NaAuS chicken-wire-like semiconductor: electronic structure and optical properties. J. Alloy. Compd. 582, 6–11 (2014)CrossRefGoogle Scholar
  12. 12.
    Reshak, A.H., Alahmed, Z.A., Bila, J., et al.: Exploration of the electronic structure of monoclinic α-Eu2(MoO4)3: DFT-based study and X-ray photoelectron spectroscopy. J. Phys. Chem. C 120(19), 10559–10568 (2016)CrossRefGoogle Scholar
  13. 13.
    Horava, P., Witten, E.: Nucl. Phys. B 460, 506–524 (1996)CrossRefGoogle Scholar
  14. 14.
    Nieto, J.A.: Matroid theory and supergravity. Rev. Mexicana de Física 44(4), 358–361 (1998)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Toppan, F.: Extended supersymmetries in one dimension. Acta Polytech. 48(2), 58–74 (2008)Google Scholar
  16. 16.
    Hagmann, C., Van Bibber, K., Roseneberg, L.J.: Axions and other very light bosons. J. Phys. G33(1), 431–432 (2006)Google Scholar
  17. 17.
    Reid, R.G.B.: An Emergence Theory, in Biological Emergences. Evolution by Natural Experiment, pp. 361–400. Massachusetts Institute of Technology, Massachusetts (2007)Google Scholar
  18. 18.
    Kryssanov, V.V., Tamaki, H., Kitamura, S.: Understanding design fundamentals: how synthesis and analysis drive creativity, resulting in emergence. Artif. Intell. Eng. 15, 329–342 (2001)CrossRefGoogle Scholar
  19. 19.
    Kvasnicka, V., Kratochvil, M., Koca, J.: Mathematical Chemistry and Computational Solutions of Syntheses. Academia, Prague (1987). (in Czech)Google Scholar
  20. 20.
    Jensen, F.: Introduction to Computational Chemistry. Wiley, New York (1999)Google Scholar
  21. 21.
    Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. 30, 264–286 (1930)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Nesetril, J., Rödl, V.: A structural generalization of Ramsey theorem. Bull. Am. Math. Soc. 83, 127–128 (1977)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Matoušek, R.: GAHC: hybrid genetic algorithm. In: Advances in Computational Algorithms and Data Analysis. Lecture Notes in Electrical Engineering, vol. 14, pp. 549–562 (2009)Google Scholar
  24. 24.
    Brandejsky, T.: The use of local models optimized by genetic programming in biomedical-signal analysis. In: Handbook of Optimization from Classical to Morden Approach, pp. 697–716. Springer, Heidelberg (2012)Google Scholar
  25. 25.
    Osmera, P.: Vortex-fractal-ring structure of electron. In: Matousek, R. (ed.) Proceedings of 14th International Conference on Soft Computing, MENDEL 2008. MENDEL, pp. 115–120. Brno University of Technology, VUT Press, Brno (2008)Google Scholar
  26. 26.
    Kotyrba, M., Volna, E., Bujok, P.: Unconventional modelling of complex system via cellular automata and differential evolution. Swarm Evol. Comput. 25, 52–62 (2015)CrossRefGoogle Scholar
  27. 27.
    Bila, J., Pokorny, J., Jura, J., Bukovsky, I.: Qualitative modeling and monitoring of selected ecosystem functions. Ecol. Model. 222, 3640–3650 (2011)CrossRefGoogle Scholar
  28. 28.
    Fojtík, A., et al.: NANO, a fascinating phenomenon of nowadays. COMTES FHT, Prague (2014). (in Czech)Google Scholar
  29. 29.
    Bila, J.: Detection of emergent situations in complex systems by structural invariant (BM, M). In: Submitted for the 22nd International Conference on Soft Computing, MENDEL (2017)Google Scholar
  30. 30.
    Oxley, J.G.: Matroid Theory. Oxford Science Publications, Oxford (2001). Reprinted EditionzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Instrumentation and Control EngineeringCzech Technical University in PraguePrague 6Czech Republic

Personalised recommendations