Advertisement

A Spiking Model of Desert Ant Navigation Along a Habitual Route

  • Przemyslaw Nowak
  • Terrence C. Stewart
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 837)

Abstract

A model producing behavior mimicking that of a homing desert ant while approaching the nest along a habitual route is presented. The model combines two strategies that interact with each other: local vector navigation and landmark guidance with an average landmark vector. As a multi-segment route with several waypoints is traversed, local vector navigation is mainly used when leaving a waypoint, landmark guidance is mostly used when approaching a waypoint, and a weighted interplay of the two is used in between waypoints. The model comprises a spiking neural network that is developed based on the principles of the Neural Engineering Framework. Its performance is demonstrated with a simulated robot in a virtual environment, which is shown to successfully navigate to the final waypoint in different scenes.

Keywords

Spiking neural networks Neural Engineering Framework Insect navigation 

References

  1. 1.
    Ardin, P., Peng, F., Mangan, M., Lagogiannis, K., Webb, B.: Using an insect mushroom body circuit to encode route memory in complex natural environments. PLoS Comput. Biol. 12, e1004683 (2016).  https://doi.org/10.1371/journal.pcbi.1004683CrossRefGoogle Scholar
  2. 2.
    Baddeley, B., Graham, P., Husbands, P., Philippides, A.: A model of ant route navigation driven by scene familiarity. PLoS Comput. Biol. 8, e1002336 (2012).  https://doi.org/10.1371/journal.pcbi.1002336CrossRefGoogle Scholar
  3. 3.
    Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T.C., Rasmussen, D., Choo, X., Voelker, A.R., Eliasmith, C.: Nengo: a Python tool for building large-scale functional brain models. Front. Neuroinform. 7, 48 (2014).  https://doi.org/10.3389/fninf.2013.00048CrossRefGoogle Scholar
  4. 4.
    Bregy, P., Sommer, S., Wehner, R.: Nest-mark orientation versus vector navigation in desert ants. J. Exp. Biol. 211, 1868–1873 (2008).  https://doi.org/10.1242/jeb.018036CrossRefGoogle Scholar
  5. 5.
    Collett, M.: How desert ants use a visual landmark for guidance along a habitual route. In: Proceedings of the National Academy of Sciences U.S.A., vol. 107, pp. 11638–11643 (2010).  https://doi.org/10.1073/pnas.1001401107
  6. 6.
    Collett, M., Collett, T.S., Bisch, S., Wehner, R.: Local and global vectors in desert ant navigation. Nature 394, 269–272 (1998)CrossRefGoogle Scholar
  7. 7.
    Cruse, H., Wehner, R.: No need for a cognitive map: decentralized memory for insect navigation. PLoS Comput. Biol. 7, e1002009 (2011).  https://doi.org/10.1371/journal.pcbi.1002009CrossRefGoogle Scholar
  8. 8.
    Eliasmith, C., Anderson, C.: Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems. MIT Press, Cambridge (2003)Google Scholar
  9. 9.
    Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., Wehner, R.: A mobile robot employing insect strategies for navigation. Rob. Auton. Syst. 30, 39–64 (2000).  https://doi.org/10.1016/S0921-8890(99)00064-0CrossRefGoogle Scholar
  10. 10.
    Rohmer, E., Singh, S.P.N., Freese, M.: V-REP: a versatile and scalable robot simulation framework. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1321–1326, Tokyo (2013).  https://doi.org/10.1109/IROS.2013.6696520
  11. 11.
    Smith, L., Philippides, A., Graham, P., Baddeley, B., Husbands, P.: Linked local navigation for visual route guidance. Adapt. Behav. 15, 257–271 (2007).  https://doi.org/10.1177/1059712307082091CrossRefGoogle Scholar
  12. 12.
    Stewart, T.C., Choo, X., Eliasmith, C.: Dynamic behaviour of a spiking model of action selection in the basal ganglia. In: Salvucci, D.D., Gunzelmann, G. (eds.) Proceedings of the 10th International Conference on Cognitive Modeling, pp. 235–240, Philadelphia (2010)Google Scholar
  13. 13.
    Strausfeld, N.J., Hirth, F.: Deep homology of arthropod central complex and vertebrate basal ganglia. Science 340, 157–161 (2013).  https://doi.org/10.1126/science.1231828CrossRefGoogle Scholar
  14. 14.
    Wehner, R.: Desert ant navigation: how miniature brains solve complex tasks. J. Comp. Physiol. A. 189, 579–588 (2003).  https://doi.org/10.1007/s00359-003-0431-1CrossRefGoogle Scholar
  15. 15.
    Wehner, R.: The architecture of the desert ant’s navigational toolkit (Hymenoptera: Formicidae). Myrmecol. News 12, 85–96 (2009)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Information TechnologyLodz University of TechnologyLodzPoland
  2. 2.Centre for Theoretical NeuroscienceUniversity of WaterlooWaterlooCanada

Personalised recommendations