A New Non-Euclidean Proximal Method for Equilibrium Problems

  • Lyubov Chabak
  • Vladimir SemenovEmail author
  • Yana Vedel
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 836)


The paper analyzes the convergence of a new iterative algorithm for approximating solutions of equilibrium problems in finite-dimensional real vector space. Using the Bregman distance instead of the Euclidean, we modified the recently proposed two-stage proximal algorithm. The Bregman distance allows us to take into account the geometry of an admissible set effectively in some important cases. Namely, with the suitable choice of distance, we obtain a method with explicitly solvable auxiliary problems on the iterative steps. The convergence of the algorithm is proved under the assumption that the solution exists and the bifunction is pseudo-monotone and Lipschitz-type.


Equilibrium problem Two-stage proximal method Bregman distance Pseudo-monotonicity Lipschitz property Convergence 


  1. 1.
    Anh, P.N.: Strong convergence theorems for nonexpansive mappings and Ky Fan inequalities. J. Optim. Theory Appl. 154, 303–320 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Anh, P.N., Hai, T.N., Tuan, P.M.: On ergodic algorithms for equilibrium problems. J. Glob. Optim. 64, 179–195 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Antipin, A.S.: Equilibrium programming: proximal methods. Comput. Math. Math. Phys. 37, 1285–1296 (1997)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Iusem, A.N., Sosa, W.: On the proximal point method for equilibrium problems in Hilbert spaces. Optimization 59, 1259–1274 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lyashko, S.I., Semenov, V.V.: A new two-step proximal algorithm of solving the problem of equilibrium programming. In: Goldengorin, B. (ed.) Optimization and Its Applications in Control and Data Sciences. SOIA, vol. 115, pp. 315–325. Springer, Cham (2016)CrossRefGoogle Scholar
  7. 7.
    Moudafi, A.: Proximal point algorithm extended to equilibrium problem. J. Nat. Geom. 15, 91–100 (1999)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Quoc, T.D., Muu, L.D., Hien, N.V.: Extragradient algorithms extended to equilibrium problems. Optimization 57, 749–776 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Semenov, V.V.: Hybrid splitting methods for the system of operator inclusions with monotone operators. Cybern. Syst. Anal. 50, 741–749 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Semenov, V.V.: A version of the mirror descent method to solve variational inequalities. Cybern. Syst. Anal. 53, 234–243 (2017)CrossRefGoogle Scholar
  11. 11.
    Takahashi, S., Takahashi, W.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 331, 506–515 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Vuong, P.T., Strodiot, J.J., Nguyen, V.H.: Extragradient methods and linesearch algorithms for solving Ky Fan inequalities and fixed point problems. J. Optim. Theory Appl. 155, 605–627 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Infrastructure and Technologies State UniversityKyivUkraine
  2. 2.Faculty of Computer Sciences and CyberneticsTaras Shevchenko National University of KyivKyivUkraine

Personalised recommendations