Advertisement

Input Information in the Approximate Calculation of Two-Dimensional Integral from Highly Oscillating Functions (Irregular Case)

  • Oleg M. Lytvyn
  • Olesia Nechuiviter
  • Iulia Pershyna
  • Vitaliy Mezhuyev
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 836)

Abstract

Nowadays, methods for digital signal and image processing are widely used in scientific and technical areas. Current stage of research in astronomy, radiology, computed tomography, holography, and radar is characterized by broad use of digital technologies, algorithms, and methods. Correspondingly, an issue of development of new or improvement of known mathematical models arose, especially for new types of input information. There are the cases when input information about function is given on the set of traces of the function on planes, the set of traces of the function on lines, and the set of values of the function in the points. The paper is dedicated to the improvement of mathematical models of digital signal processing and imaging by the example of constructing formulas of approximate calculation of integrals of highly oscillating functions of two variables (irregular case). The feature of the proposed methods is using the input information about function as a set of traces of function on lines. The estimation of proposed method has been done for the Lipschitz class and class of differentiable functions. The proposed formula is based on the algorithm, which is also effective for a class of discontinuous functions.

Keywords

Highly oscillating functions Two-dimensional functions Integrals of highly oscillating functions of two variables 

References

  1. 1.
    Lytvyn, O.M.: Interlineation of function and its application, 544 p. Osnova, Kharkiv (2002). (in Ukrainian)Google Scholar
  2. 2.
    Mezhuyev, V., Lytvyn, O.M., Zain, J.M.: Metamodel for mathematical modelling surfaces of celestial bodies on the base of radiolocation data. Indian J. Sci. Technol. 8(13), 70630 (2015)CrossRefGoogle Scholar
  3. 3.
    Lytvyn, O.M., Nechuyviter, O.P.: Methods in the multivariate digital signal processing with using spline-interlineation. In: Proceedings of the IASTED International Conferences on Automation, Control, and Information Technology (ASIT 2010), Novosibirsk, 15–18 June 2010, pp. 90–96 (2010)Google Scholar
  4. 4.
    Lytvyn, O.N., Matveeva, S.Yu.: Aerospace pictures processing by means of interstripation of functions of two variables. J. Autom. Inf. Sci. 45(3), 53–67 (2013)CrossRefGoogle Scholar
  5. 5.
    Sergienko, I.V., Dejneka, V.S., Lytvyn, O.N., Lytvyn, O.O.: The method of interlineation of vector functions w̄ (x, y, z, t) on a system of vertical straight lines and its application in crosshole seismic tomograph. Cybern. Syst. Anal. 49(3), 379–389 (2013)CrossRefGoogle Scholar
  6. 6.
    Filon, L.N.G.: On a quadrature formula for trigonometric integrals. Proc. R. Soc. Edinb. 49, 38–47 (1928)CrossRefGoogle Scholar
  7. 7.
    Luke, Y.L.: On the computation of oscillatory integrals. Proc. Cambridge Phil. Soc. 50, 269–277 (1954)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Flinn, E.A.: A modification of Filon’s method of numerical integration. JACM 7, 181–184 (1960)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Zamfirescu, I.: An extension of Gauss’s method for the calculation of improper integrals. Acad. R.P Romune Stud. Cerc. Mat. 14, 615–631 (1963). (in Romanian)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bakhvalov, N.S., Vasileva, L.G.: Comput. Math. Phys. 8, 241 (1968)CrossRefGoogle Scholar
  11. 11.
    Iserles, A.: On the numerical quadrature of highly-oscillating integrals I: fourier transforms. IMA J. Numer. Anal. 24, 365–391 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Milovanovic, G.V., Stanic M.P.: Numerical integration of highly oscillating functions. In: Analytic Number Theory, Approximation Theory, and Special Functions, pp. 613–649 (2014)Google Scholar
  13. 13.
    Eckhoff, K.S.: Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions. Math. Comput. 64(210), 671–690 (1995)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Adcock, B.: Convergence acceleration of Fourier-like series in one or more dimensions. Cambridge Numerical Analysis Reports (NA2008/11)/DAMPT. University of Cambridge, 30 pGoogle Scholar
  15. 15.
    Levin, D.: Procedures for computing one and two-dimensional integrals of functions with rapid irregular oscillations. Math. Comput. 38(158), 531–538 (1982)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Iserles, A.: On the numerical quadrature of highly oscillating integrals II: irregular oscillators. IMA J. Numer. Anal. 25, 25–44 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Iserles, A., Norsett, S.P.: Efficient quadrature of highly oscillatory integrals using derivatives. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461, 1383–1399 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sergienko, I.V., Zadiraka, V.K., Melnikova, S.S., Lytvyn, O.M., Nechuiviter, O.P.: Optimal algorithms of calculation of highly oscillatory integrals and their applications, p. 447. Monography, T.1. Algorithms, Kiev (2011) (Ukrainian)Google Scholar
  19. 19.
    Lytvyn, O.N., Nechuiviter, O.P.: 3D fourier coefficients on the class of differentiable functions and spline interflatation. J. Autom. Inf. Sci. 44(3), 45–56 (2012)CrossRefGoogle Scholar
  20. 20.
    Lytvyn, O.N., Nechuiviter, O.P.: Approximate calculation of triple integrals of rapidly oscillating functions with the use of lagrange polynomial interflatation. Cybern. Syst. Anal. 50(3), 410–418 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Oleg M. Lytvyn
    • 1
  • Olesia Nechuiviter
    • 1
  • Iulia Pershyna
    • 1
  • Vitaliy Mezhuyev
    • 2
  1. 1.Ukrainian Engineering and Pedagogical AcademyKharkivUkraine
  2. 2.University Malaysia PahangGambangMalaysia

Personalised recommendations