Advertisement

Autobiography

  • Ewa Orłowska
Chapter
Part of the Outstanding Contributions to Logic book series (OCTR, volume 17)

Abstract

In this chapter the life, education, scientific path, and research of Ewa Orłowska are presented. Information on her service for the logic community, in particular on activities in scientific organisations, councils, and committees, on membership of editorial boards, and on participation in national and international projects is also mentioned.

Keywords

Life of Ewa Orłowska Scientific path of Ewa Orłowska Research of Ewa Orłowska 

References

  1. Balbiani, P. & Orłowska, E. (1999). A hierarchy of modal logics with relative accessibility relations. Journal of Applied Non-classical Logics: Special Issue in the Memory of George Gargov, 9(2–3), 303–328.CrossRefGoogle Scholar
  2. Burrieza, A., Ojeda-Aciego, M., & Orłowska, E. (2006). Relational approach to order-of-magnitude reasoning. In H. de Swart, E. Orłowska, M. Roubens, & G. Schmidt (Eds.), Theory and Applications of Relational Structures as Knowledge Instruments II: International Workshops of COST Action 274, TARSKI, 2002–2005, Selected Revised Papers (Vol. 4342, pp. 105–124). Lecture Notes in Artificial Intelligence. Berlin: Springer.CrossRefGoogle Scholar
  3. Demri, S. & Orłowska, E. (2002). Incomplete Information: Structure, Inference, Complexity. Monographs in Theoretical Computer Science. An EATCS series. Berlin: Springer.CrossRefGoogle Scholar
  4. Demri, S., Orłowska, E., & Rewitzky, I. (1994). Towards reasoning about Hoare relations. Annals of Mathematics and Artificial Intelligence, 12(3–4), 265–289.Google Scholar
  5. Dzik, W., Orłowska, E., & van Alten, C. (2006). Relational representation theorems for general lattices with negations. In R. A. Schmidt (Ed.), Relations and Kleene Algebra in Computer Science: 9th International Conference on Relational Methods in Computer Science and 4th International Workshop on Applications of Kleene Algebra, RelMiCS/AKA 2006, Manchester, UK, August 29-September 2, Proceedings (Vol. 4136, pp. 162–176). Lecture Notes in Computer Science. Berlin: Springer.CrossRefGoogle Scholar
  6. Ehrenfeucht, A. & Orłowska, E. (1967). Mechanical proof procedure for propositional calculus. Bulletin of the Polish Academy of Sciences, 15, 25–35.Google Scholar
  7. Frias, M. & Orłowska, E. (1995). A proof system for fork algebras and its applications to reasoning in logics based on intuitionism. Logique et Analyse, 38(150–152), 239–284.Google Scholar
  8. Gallin, D. (1975). Intensional and Higher-order Modal Logic: With Applications to Montague Semantics. Amsterdam: North-Holland.CrossRefGoogle Scholar
  9. Hartonas, C. & Dunn, M. (1997). Stone duality for lattices. Algebra Universalis, 37(3), 391–401.CrossRefGoogle Scholar
  10. Konrad, E., Orłowska, E., & Pawlak, Z. (1981). Knowledge representation systems (No. 433). ICS PAS Reports.Google Scholar
  11. Kripke, S. (1963). Semantical analysis of modal logic II. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9, 67–96.CrossRefGoogle Scholar
  12. Lis, Z. (1960). Wynikanie semantyczne a wynikanie formalne. Studia Logica, 10(1), 39–54.CrossRefGoogle Scholar
  13. MacCaull, W. & Orłowska, E. (2006). A logic of typed relations and its applications to relational databases. Journal of Logic and Computation, 16(6), 789–815.CrossRefGoogle Scholar
  14. Maksimova, L. (2008). The Beth property and interpolation in lattice-based algebras and logics. Algebra and Logic, 47(3), 176–192.CrossRefGoogle Scholar
  15. Orłowska, E. (1973). Theorem Proving Systems. Dissertationes Mathematicae CIII. Warsaw: Polish Scientific Publishers.Google Scholar
  16. Orłowska, E. (1980a). Resolution systems and their applications: Part I. Fundamenta Informaticae, 3(2), 235–268.Google Scholar
  17. Orłowska, E. (1980b). Resolution systems and their applications: Part II. Fundamenta Informaticae, 3(3), 333–361.Google Scholar
  18. Orłowska, E. (1983). Semantics of vague concepts. In G. Dorn & P. Weingartner (Eds.), Foundations of Logic and Linguistics. Problems and their Solutions. Selected Contributions to the 7th International Congress of Logic, Methodology and Philosophy of Science, Salzburg (pp. 465–482). New York: Plenum Press.CrossRefGoogle Scholar
  19. Orłowska, E. (1985a). Kripke models with relative accessibility (No. 569). ICS PAS Reports.Google Scholar
  20. Orłowska, E. (1985b). Logic of indiscernibility relations. In A. Skowron (Ed.), Proceedings of Computation Theory–5th Symposium, 1984 (Vol. 208, pp. 177–186). Lecture Notes in Computer Science. Zaborów, Poland: Springer.Google Scholar
  21. Orłowska, E. (1988a). Kripke models with relative accessibility and their application to inferences from incomplete information. In G. Mirkowska & H. Rasiowa (Eds.), Mathematical Problems in Computation Theory (Vol. 21, pp. 329–339). Banach Centre Publications.Google Scholar
  22. Orłowska, E. (1988b). Relational interpretation of modal logics. In H. Andreka, D. Monk, & I. Németi (Eds.), Algebraic Logic. Colloquia Mathematica Societatis Janos Bolyai. (Vol. 54, pp. 443–471). Amsterdam: North Holland.Google Scholar
  23. Orłowska, E. (1988c). The Montague logic and its extensions. In W. Buszkowski, W. Marciszewski, & J. van Benthem (Eds.), Categorial Grammar (pp. 301–323). Amsterdam: C. John Benjamins.Google Scholar
  24. Orłowska, E. (1992). Relational proof systems for relevant logics. Journal of Symbolic Logic, 57(4), 1425–1440.CrossRefGoogle Scholar
  25. Orłowska, E. (1993). Dynamic logic with program specifications and its relational proof system. Journal of Applied Non-classical Logics, 3(2), 147–171.CrossRefGoogle Scholar
  26. Orłowska, E. (1994). Relational semantics for non-classical logics: Formulas are relations. In J. Woleński (Ed.), Philosophical Logic in Poland (pp. 167–186). Dordrecht: Kluwer.CrossRefGoogle Scholar
  27. Orłowska, E. & Golińska-Pilarek, J. (2011). Dual Tableaux: Foundations, Methodology, Case Studies. Trends in Logic. Dordrecht-Heidelberg-London-New York: Springer.CrossRefGoogle Scholar
  28. Orłowska, E. & Pawlak, Z. (1984). Representation of nondeterministic information. Theoretical Computer Science, 29, 27–39.CrossRefGoogle Scholar
  29. Orłowska, E. & Vakarelov, D. (2005). Lattice-based modal algebras and modal logics. In P. Hájek, L. Valdés-Villanueva, & D. Westerståhl (Eds.), Logic, Methodology and Philosophy of Science: Proceedings of the 12th International Congress (pp. 147–170). Abstract in the volume of abstracts, 22–23. London: King’s College Publications.Google Scholar
  30. Orłowska, E. & Weingartner, P. (1986). Semantic considerations on relevance (No. 582). ICS PAS Reports.Google Scholar
  31. Orłowska, E., Radzikowska, A. M., & Rewitzky, I. (2015). Dualities for Structures of Applied Logics. Studies in Logic, Mathematical Logic and Foundations. London: College Publications.Google Scholar
  32. Pawlak, Z. (1981). Rough sets (No. 431). ICS PAS Reports.Google Scholar
  33. Pawlak, Z. (1982). Rough sets. International Journal of Parallel Programming, 11(5), 341–356.Google Scholar
  34. Rasiowa, H. & Sikorski, R. (1960). On the Gentzen theorem. Fundamenta Mathematicae, 48, 57–69.CrossRefGoogle Scholar
  35. Robinson, A. (1965). A machine-oriented logic based on the resolution principle. Journal of the ACM, 12(1), 23–41.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.National Institute of TelecommunicationsWarsawPoland

Personalised recommendations