Advertisement

Everything is a Relation: A Preview

  • Joanna Golińska-Pilarek
  • Michał Zawidzki
Chapter
Part of the Outstanding Contributions to Logic book series (OCTR, volume 17)

Abstract

This chapter provides a concise overview of Ewa Orłowska’s research contributions and the content of the volume.

Keywords

Ewa Orłowska Research of Ewa Orłowska Scientific path of Ewa Orłowska 

References

  1. Balbiani, P. & Orłowska, E. (1999). A hierarchy of modal logics with relative accessibility relations. Journal of Applied Non-classical Logics: Special Issue in the Memory of George Gargov, 9(2–3), 303–328.Google Scholar
  2. Burrieza, A., Mora, A., Ojeda-Aciego, M., & Orłowska, E. (2009). An implementation of a dual tableaux system for order-of-magnitude qualitative reasoning. International Journal of Computer Mathematics, 86(10–11), 1852–1866.Google Scholar
  3. Burrieza, A. & Ojeda-Aciego, M. (2003). A multimodal logic approach to order of magnitude qualitative reasoning. In R. Conejo, M. Urretavizcaya, & J.-L. Pérez-de-la-Cruz (Eds.), Current Topics in Artificial Intelligence, 10th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2003, and 5th Conference on Technology Transfer, TTIA 2003. Revised Selected Papers (Vol. 3040, pp. 66–75). Lecture Notes in Computer Science. Spain: Springer.Google Scholar
  4. Burrieza, A. & Ojeda-Aciego, M. (2005). A multimodal logic approach to order of magnitude qualitative reasoning with comparability and negligibility relations. Fundamenta Informaticae, 68(1–2), 21–46.Google Scholar
  5. Burrieza, A., Ojeda-Aciego, M., & Orłowska, E. (2006). Relational approach to order-of-magnitude reasoning. In H. de Swart, E. Orłowska, M. Roubens, & G. Schmidt (Eds.), Theory and Applications of Relational Structures as Knowledge Instruments II: International Workshops of COST Action 274, TARSKI, 2002–2005, Selected Revised Papers (Vol. 4342, pp. 105–124). Lecture Notes in Artificial Intelligence. Berlin: Springer.Google Scholar
  6. Cantone, D., Nicolosi Asmundo, M., & Orłowska, E. (2010). Dual tableau-based decision procedures for some relational logics. In W. Faber, & N. Leone (Eds.), Proceedings of the 25th Italian Conference on Computational Logic. CEUR Workshop Proceedings (Vol. 598). Rende, Italy: CEUR-WS.org.Google Scholar
  7. Demri, S. & Orłowska, E. (1996). Logical analysis of demonic nondeterministic programs. Theoretical Computer Science, 166(1–2), 173–202.Google Scholar
  8. Demri, S. & Orłowska, E. (1998). Complementarity relations: Reduction of decision rules and informational representability. In L. Polkowski & A. Skowron (Eds.), Rough Sets in Knowledge Discovery (pp. 99–106). Berlin: Springer-Physica Verlag.Google Scholar
  9. Demri, S. & Orłowska, E. (2002). Incomplete Information: Structure, Inference, Complexity. Monographs in Theoretical Computer Science. An EATCS series. Berlin: Springer.Google Scholar
  10. Demri, S., Orłowska, E., & Vakarelov, D. (1999). Indiscernibility and complementarity relations in information systems. In J. Gerbrandy, M. Marx, M. de Rijke, & Y. Venema (Eds.), JFAK. Essays Dedicated to Johan van Benthem on the Occasion of his 50th Birthday. Amsterdam: Amsterdam University Press.Google Scholar
  11. Düntsch, I. & Orłowska, E. (2000). Logics of complementarity in information systems. Mathematical Logic Quarterly, 46(2), 267–288.Google Scholar
  12. Düntsch, I. & Orłowska, E. (2001). Beyond modalities:Sufficiency and mixed algebras. In E. Orłowska & A. Szałas (Eds.), Relational Methods for Computer Science Applications (Vol. 65, pp. 263–285). Studies in Fuzziness and Soft Computing. Heidelberg: Springer-Physica Verlag.Google Scholar
  13. Düntsch, I., Gediga, G., & Orłowska, E. (2001). Relational attribute systems. International Journal of Human-Computer Studies, 55(3), 293–309.Google Scholar
  14. Düntsch, I. & Orłowska, E. (2008). A discrete duality between the apartness algebras and apartness frames. Journal of Applied Non-classical Logics, 18(2–3), 213–227.Google Scholar
  15. Düntsch, I., Orłowska, E., & Rewitzky, I. (2010). Structures with multirelations, their discrete dualities and applications. Fundamenta Informaticae, 100(1–4), 77–98.Google Scholar
  16. Düntsch, I. & Orłowska, E. (2011a). An algebraic approach to preference relations. In H. de Swart (Ed.), Relational and Algebraic Methods in Computer Science. 12th International Conference, RAMICS 2011, Rotterdam, The Netherlands, May 30-June 3, Proceedings (Vol. 6663, pp. 141–147). Lecture Notes in Computer Science. Berlin: Springer.Google Scholar
  17. Düntsch, I. & Orłowska, E. (2011b). Discrete dualities for double Stone algebras. Studia Logica, 99(1–3), 127–142.Google Scholar
  18. Düntsch, I. & Orłowska, E. (2013). Discrete duality for rough relation algebras. Fundamenta Informaticae, 127(1–4), 35–47.Google Scholar
  19. Düntsch, I. & Orłowska, E. (2014). Discrete dualities for some algebras with relations. Journal of Logical and Algebraic Methods in Programming, 83(2), 169–179.Google Scholar
  20. Düntsch, I., Orłowska, E., & van Alten, C. (2016). Discrete dualities for \(n\)-potent MTL-algebras and 2-potent BL-algebras. Fuzzy Sets and Systems, 292, 203–214.Google Scholar
  21. Düntsch, I., Kwuida, L., & Orłowska, E. (2017a). A discrete representation for dicomplemented lattices. Fundamenta Informaticae, 156(3–4), 281–295.Google Scholar
  22. Düntsch, I., Orłowska, E., & Tinchev, T. (2017b). Mixed algebras and their logics. Journal of Applied Non-classical Logics, 27(3–4), 304–320.Google Scholar
  23. Dzik, W., Orłowska, E., & van Alten, C. (2006). Relational representation theorems for general lattices with negations. In R. A. Schmidt (Ed.), Relations and Kleene Algebra in Computer Science: 9th International Conference on Relational Methods in Computer Science and 4th International Workshop on Applications of Kleene Algebra, RelMiCS/AKA 2006, Manchester, UK, August 29-September 2, Proceedings (Vol. 4136, pp. 162–176). Lecture Notes in Computer Science. Berlin: Springer.Google Scholar
  24. Ehrenfeucht, A. & Orłowska, E. (1967). Mechanical proof procedure for propositional calculus. Bulletin of the Polish Academy of Sciences, 15, 25–35.Google Scholar
  25. Fariñas del Cerro, L. & Orłowska, E. (1983). DAL—A logic for data analysis (No. 183). Langages et Systemes Informatiques.Google Scholar
  26. Fariñas del Cerro, L. & Orłowska, E. (1985). DAL—A logic for data analysis. Theoretical Computer Science, 36, 251–264. (Corrigendum: (Fariñas del Cerro and Orłowska 1986)).Google Scholar
  27. Fariñas del Cerro, L. & Orłowska, E. (1986). DAL—A logic for data analysis: Corrigendum. Theoretical Computer Science, 47(3), 345.Google Scholar
  28. Formisano, A., Omodeo, E., & Orłowska, E. (2006). An environment for specifying properties of dyadic relations and reasoning about them II: Relational presentation of non-classical logics. In H. de Swart, E. Orłowska, M. Roubens & G. Schmidt (Eds.), Theory and Applications of Relational Structures as Knowledge Instruments II: International Workshops of COST Action 274, TARSKI, 2002–2005, Selected Revised Papers (Vol. 4342, pp. 89–104). Lecture Notes in Artificial Intelligence. Berlin: Springer.Google Scholar
  29. Frias, M. & Orłowska, E. (1995). A proof system for fork algebras and its applications to reasoning in logics based on intuitionism. Logique et Analyse, 38(150–152), 239–284.Google Scholar
  30. Goguen, J. A. & Burstall, R. M. (1984). Introducing institutions. In E. M. Clarke, & D. Kozen (Eds.), Proceedings of Logics of Programs, Workshop, Carnegie Mellon University (Vol. 164, pp. 221–256). Lecture Notes in Computer Science. Pittsburgh, USA: Springer.Google Scholar
  31. Golińska-Pilarek, J. & Orłowska, E. (2007). Tableaux and dual tableaux: Transformation of proofs. Studia Logica, 85(3), 283–302.Google Scholar
  32. Guttman, L. (1944). A basis for scaling qualitative data. American Sociological, 9, 139–150.Google Scholar
  33. Hartonas, C. & Orłowska, E. (2018). Representations of lattices with modal operators with two-sorted frames. (Submitted)Google Scholar
  34. Ibarra, O. H. (1978). Reversal-bounded multicounter machines and their decision problems. Journal of the ACM, 25(1), 116–133.Google Scholar
  35. Järvinen, J. & Orłowska, E. (2005). Relational correspondences for lattices with operators. In Participants Proceedings of the 8th International Seminar RelMiCS (pp. 111–118). St.Catharines, Canada.Google Scholar
  36. Järvinen, J. & Orłowska, E. (2006). Relational correspondences for lattices with operators. In W. MacCaull, M. Winter, & I. Düntsch (Eds.), Relational Methods in Computer Science: 8th International Seminar on Relational Methods in Computer Science, 3rd International Workshop on Applications of Kleene Algebra, and Workshop of COST action 274: TARSKI, Selected Revised Papers (Vol. 3929, pp. 134–146). Lecture Notes in Computer Science. Berlin: Springer.Google Scholar
  37. Konikowska, B., Morgan, C., & Orłowska, E. (1998). A relational formalisation of arbitrary finite-valued logics. Logic Journal of the IGPL, 6(5), 755–774.Google Scholar
  38. Konrad, E., Orłowska, E., & Pawlak, Z. (1981a). Knowledge representation systems (No. 433). ICS PAS Reports.Google Scholar
  39. Konrad, E., Orłowska, E., & Pawlak, Z. (1981b). On approximate concept learning (No. 81/87). Technische Universitat Berlin, Bericht.Google Scholar
  40. Konrad, E., Orłowska, E., & Pawlak, Z. (1982). On approximate concept learning. In Proceedings of the European Conference on AI. Orsay, France.Google Scholar
  41. MacCaull, W. & Orłowska, E. (2004). A calculus of typed relations. In R. Berghammer, B. Möller, & G. Struth (Eds.), Relational and Kleene-Algebraic Methods in Computer Science: 7th International Seminar on Relational Methods in Computer Science and 2nd International Workshop on Applications of Kleene Algebra, Bad Malente, Germany, May 12–17, 2003, Revised Selected Papers (Vol. 3051, pp. 191–200). Lecture Notes in Computer Science. Berlin: Springer.Google Scholar
  42. Maddux, R. (2006). Relation Algebras. Studies in Logic and the Foundations of Mathematics. Amsterdam: Elsevier.Google Scholar
  43. Omodeo, E., Orłowska, E., & Policriti, A. (2003). Simulation and semantic analysis of modal logics by means of an elementary set theory treated á la Rasiowa- Sikorski. In Proceedings of the 7th International Workshop on Relational Methods in Computer Science RelMiCS (pp. 238–241). Malente, Germany.Google Scholar
  44. Omodeo, E., Orłowska, E., & Policriti, A. (2004). Rasiowa-Sikorski style relational elementary set theory. In R. Berghammer, B. Möller, & G. Struth (Eds.), Relational and Kleene-Algebraic Methods in Computer Science: 7th International Seminar on Relational Methods in Computer Science and 2nd International Workshop on Applications of Kleene Algebra, Bad Malente, Germany, May 12–17, 2003, Revised Selected Papers (Vol. 3051, pp. 215–226). Lecture Notes in Computer Science. Berlin: Springer.Google Scholar
  45. Orłowska, E., Radzikowska, A. M., & Rewitzky, I. (2015). Dualities for Structures of Applied Logics. Studies in Logic, Mathematical Logic and Foundations. London: College Publications.Google Scholar
  46. Orłowska, E. (1967). Mechanical proof procedure for the \(n\)-valued propositional calculus. Bulletin of the Polish Academy of Sciences, 15, 537–541.Google Scholar
  47. Orłowska, E. (1969). Mechanical theorem proving in a certain class of formulae of the predicate calculus. Studia Logica, 25(1), 17–27.Google Scholar
  48. Orłowska, E. (1973). Theorem Proving Systems. Dissertationes Mathematicae CIII. Warsaw: Polish Scientific Publishers.Google Scholar
  49. Orłowska, E. (1974). Threshold logic. Studia Logica, 33(1), 1–9.Google Scholar
  50. Orłowska, E. (1976). Threshold logic (II). Studia Logica, 35(3), 243–247.Google Scholar
  51. Orłowska, E. (1978a). Resolution system for \(\omega ^{+}\)-valued logic. Bulletin of the Section of Logic, 7, 68–74.Google Scholar
  52. Orłowska, E. (1978b). The resolution principle for \(\omega ^{+}\)-valued logic. Fundamenta Informaticae, 2, 1–15.Google Scholar
  53. Orłowska, E. (1979). A generalization of the resolution principle. Bulletin of the Polish Academy of Sciences, 27, 227–234.Google Scholar
  54. Orłowska, E. (1980a). Resolution systems and their applications: Part I. Fundamenta Informaticae, 3(2), 235–268.Google Scholar
  55. Orłowska, E. (1980b). Resolution systems and their applications: Part II. Fundamenta Informaticae, 3(3), 333–361.Google Scholar
  56. Orłowska, E. (1982a). Logic of vague concepts. Bulletin of the Section of Logic, 11(3/4), 115–126.Google Scholar
  57. Orłowska, E. (1982b). Representation of temporal information. International Journal of Computer and Information Sciences, 11(6), 397–408.Google Scholar
  58. Orłowska, E. (1982c). Semantics of vague concepts (No. 450). ICS PAS Reports.Google Scholar
  59. Orłowska, E. (1983). Semantics of vague concepts. In G. Dorn, & P. Weingartner (Eds.), Foundations of Logic and Linguistics. Problems and their Solutions. Selected Contributions to the 7th International Congress of Logic, Methodology and Philosophy of Science, Salzburg (pp. 465–482). New York: Plenum Press.Google Scholar
  60. Orłowska, E. (1984a). Logic of nondeterministic information (No. 545). ICS PAS Reports.Google Scholar
  61. Orłowska, E. (1984b). Modal logics in the theory of information systems. Mathematical Logic Quarterly (Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik), 30(13–16), 213–222.Google Scholar
  62. Orłowska, E. (1985a). Logic of indiscernibility relations. In A.Skowron (Ed.), Proceedings of Computation Theory–5thSymposium, 1984 (Vol. 208, pp. 177–186). Lecture Notes in Computer Science. Zaborów, Poland: Springer.Google Scholar
  63. Orłowska, E. (1985b). Logic of nondeterministic information. Studia Logica, 44(1), 91–100.Google Scholar
  64. Orłowska, E. (1985c). Mechanical proof methods for Post logics. Logique et Analyse, 28(110–111), 173–192.Google Scholar
  65. Orłowska, E. (1986). Logic for reasoning about knowledge (No. 594). ICS PAS Reports.Google Scholar
  66. Orłowska, E. (1987). Logic for reasoning about knowledge. Bulletin of the Section of Logic, 16(1), 26–38.Google Scholar
  67. Orłowska, E. (1988a). Kripke models with relative accessibility and their application to inferences from incomplete information. In G. Mirkowska & H. Rasiowa (Eds.), Mathematical Problems in Computation Theory (21, pp. 329. 339). Banach Centre Publications.Google Scholar
  68. Orłowska, E. (1988b). Relational interpretation of modal logics.In H. Andreka, D. Monk, & I. Németi (Eds.), Algebraic Logic. Colloquia Mathematica Societatis Janos Bolyai (Vol. 54, pp. 443–471). Amsterdam: North Holland.Google Scholar
  69. Orłowska, E. (1989). Logic for reasoning about knowledge. Mathematical Logic Quarterly (Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik), 35(6), 559–572.Google Scholar
  70. Orłowska, E. (1991). Relational formalization of temporal logics. In G. Schurz, & G. Dorn (Eds.), Advances in Scientific Philosophy (Vol. 24, pp. 143–171). Poznan Studies in the Philosophy of the Sciences and the Humanities. Rodopi.Google Scholar
  71. Orłowska, E. (1992). Relational proof systems for relevant logics. Journal of Symbolic Logic, 57(4), 1425–1440.Google Scholar
  72. Orłowska, E. (1993a). Dynamic logic with program specifications and its relational proof system. Journal of Applied Non-classical Logics, 3(2), 147–171.Google Scholar
  73. Orłowska, E. (1993b). Reasoning with incomplete information: Rough set based information logics. In V. Alagar, S. Bergler, & F. Dong (Eds.), Incompleteness and Uncertainty in Information Systems: Proceedings of the SOFTEKS Workshop on Incompleteness and Uncertainty in Information Systems (pp. 16–33). Workshops in Computing. Montreal, Canada: Springer.Google Scholar
  74. Orłowska, E. (1994). Nonclassical logics in a relational framework. In M. Omyła (Ed.), Science and Language (pp. 269–295). Warsaw University.Google Scholar
  75. Orłowska, E. (1995). Temporal logics in a relational framework. In L. Bolc, & A. Szałas (Eds.), Time and Logic: A Computational Approach (pp. 249–277). London: University College Press.Google Scholar
  76. Orłowska, E. (1997). Many-valuedness and uncertainty. In Proceedings of the 27th IEEE International Symposium on Multiple-Valued Logic (pp. 153–160). Antigonish, Canada: IEEE Computer Society.Google Scholar
  77. Orłowska, E. (1999). Many-valuedness and uncertainty. Multiple Valued Logic, 4, 207–227.Google Scholar
  78. Orłowska, E. & Golińska-Pilarek, J. (2011). Dual Tableaux: Foundations, Methodology, Case Studies. Trends in Logic. Dordrecht-Heidelberg-London-New York: Springer.Google Scholar
  79. Orłowska, E. & Pawlak, Z. (1981a). Expressive power of knowledge representation systems (No. 432). ICS PAS Reports.Google Scholar
  80. Orłowska, E. & Pawlak, Z. (1981b). Representation of nondeterministic information (No. 450). ICS PAS Reports.Google Scholar
  81. Orłowska, E. & Radzikowska, A. (2002). Double residuated lattices and their applications. In Relational Methods in Computer Science. RelMiCS 2001 (Vol. 2561, pp. 171–189). Lecture Notes in Computer Science. Berlin: Springer.Google Scholar
  82. Orłowska, E. & Radzikowska, A. (2006). Relational representability for algebras of substructural logics. In W. MacCaull, M. Winter, & I. Düntsch (Eds.), Relational Methods in Computer Science: 8th International Seminar on Relational Methods in Computer Science, 3rd International Workshop on Applications of Kleene Algebra, and Workshop of COST Action 274: TARSKI, Selected Revised Papers (Vol. 3929, pp. 212–224). Lecture Notes in Computer Science. Berlin: Springer.Google Scholar
  83. Orłowska, E. & Radzikowska, A. (2008). Representation theorems for some fuzzy logics based on residuated non-distributive lattices. Fuzzy Sets and Systems, 159(10), 1247–1259.Google Scholar
  84. Orłowska, E. & Radzikowska, A. (2009). Discrete duality for some axiomatic extensions of MTL algebras. In P. Cintula, Z. Hanikova & V. Svejdar (Eds.), Witnessed Years: Essays in Honour of Petr Hájek (pp. 329–344). London: King’s College Publications.Google Scholar
  85. Orłowska, E. & Rewitzky, I. (2007). Discrete dualities for Heyting algebras with operators. Fundamenta Informaticae, 81(1–3), 275–295.Google Scholar
  86. Orłowska, E. & Rewitzky, I. (2008). Context algebras, context frames and their discrete duality. In J. Peters, A. Skowron, & H. Rybiński (Eds.), Transactions on Rough Sets IX (Vol. 5390, pp. 212–229). Lecture Notes in Computer Science. Berlin: Springer.Google Scholar
  87. Orłowska, E. & Rewitzky, I. (2009). Discrete duality for relation algebras and cylindric algebras. In Relations and Kleene Algebra in Computer Science: Proceedings of 11th International Conference on Relational Methods in Computer Science, RelMiCS 2009 and 6th International Conference on Applications of Kleene Algebra, AKA (Vol. 5827, pp. 291–305). Lecture Notes in Computer Science. Doha, Qatar: Springer.Google Scholar
  88. Orłowska, E. & Rewitzky, I. (2010). Algebras for Galois-style connections and their discrete duality. Fuzzy Sets and Systems, 161(9), 1325–1342.Google Scholar
  89. Orłowska, E. & Szałas, A. (2006). Quantifier elimination in elementary set theory. In W. MacCaull, M. Winter, & I. Düntsch (Eds.), Relational Methods in Computer Science: 8th International Seminar on Relational Methods in Computer Science, 3rd International Workshop on Applications of Kleene Algebra, and Workshop of COST Action 274: TARSKI, St. Catharines, ON, Canada, February 22–26, 2005, Selected Revised Papers (Vol. 3929, pp. 237–248). Lecture Notes in Computer Science. Berlin: Springer.Google Scholar
  90. Orłowska, E. & Vakarelov, D. (2005). Lattice-based modal algebras and modal logics. In P. Hájek, L. Valdés-Villanueva, & D. Westerståhl (Eds.), Logic, Methodology and Philosophy of Science: Proceedings of the 12th International Congress (pp. 147–170). Abstract in the volume of abstracts, 22–23. London: King’s College Publications.Google Scholar
  91. Orłowska, E. & Wierzchoń, S. (1985). Mechanical reasoning in fuzzy logics. Logique et Analyse, 28(110–111), 193–207.Google Scholar
  92. Pawlak, Z. (1973). Mathematical foundation of information retrieval (No. 101). ICS PAS Reports.Google Scholar
  93. Rasiowa, H. & Sikorski, R. (1960). On the Gentzen theorem. Fundamenta Mathematicae, 48, 57–69.Google Scholar
  94. Robinson, A. (1965). A machine-oriented logic based on the resolution principle. Journal of the ACM, 12(1), 23–41.Google Scholar
  95. Tarski, A. (1941). On the calculus of relations. Journal of Symbolic Logic, 6(3), 73–89.Google Scholar
  96. Tarski, A. & Givant, S. (1987). Formalization of Set Theory without Variables. Colloquium Publications. Providence: American Mathematical Society.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Philosophy, University of WarsawWarsawPoland
  2. 2.Department of Logic and Methodology of ScienceUniversity of LodzŁódźPoland

Personalised recommendations