High-Performance Dual-Axis Gyroscope ASIC Design

  • Zhichao TanEmail author
  • Khiem Nguyen
  • Bill Clark


This chapter presents a high-performance dual-axis (pitch and roll) MEMS vibratory gyroscope readout ASIC which converts angular rate information to digital output. Two signal-processing chains surrounding the MEMS sensor are implemented, namely the drive channel and the sense channel. The drive channel drives the sensor to resonate at its resonant frequency, which produces a velocity of the sensor disc to generate the Coriolis force during angular rotation. The sense channel employs a low noise transimpedance amplifier (TIA) followed by a demodulator (DM), which down converts the angular rate input signal from the resonant frequency to baseband. Two switched-capacitor (SC) 2–1 MASH delta-sigma ADCs convert the input angular rate from the pitch and roll arises to digital output. The reference of the ADC is also demodulated from the sensor output to cancel out supply voltage dependence. The whole ASIC, including the high-voltage MEMS sensor driver, digital filter, on-chip regulator, and temperature sensor, is fabricated in a 0.18 μm CMOS technology with an area of 7.3 mm2. The design achieves a noise floor of 0.0032°/s/√Hz and 0.0061°/s/√Hz in full-scale input ranges of 500°/s and 2000°/s, respectively, over a 480 Hz signal bandwidth. The bias instability is measured as 2.5°/h at input range of 500°/s. The whole ASIC consumes 7 mA from a 3 V supply.



The authors would like to thank their colleagues from the High-Performance Inertial sensor group at Analog Devices Inc. (both in Wilmington and Greensboro) for their help during design, layout, and chip evaluations.


  1. 1.
    Marek J. MEMS for automotive and consumer electronics. In: IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, 2010.Google Scholar
  2. 2.
    Yazdi N, Ayazi F, Najafi K. Micromachined inertial sensors. Proc IEEE. 1998;86(8):1640–59.CrossRefGoogle Scholar
  3. 3.
    Clark WA. Micromachined vibratory rate gyroscopes, Dissertation, 1997.Google Scholar
  4. 4.
    Balachandran GK, Petkov VP, Mayer T, Blalslink T. A 3-axis gyroscope for electronic stability control with continuous self-test. IEEE J Solid State Circuits. 2016;50(1):177–86.Google Scholar
  5. 5.
    Sharma A, Zaman MF, Ayazi F. A Sub-0.2 hr bias drift micromechanical silicon gyroscope with automatic CMOS mode-matching. IEEE J Solid State Circuits. 2009;44(5):1593–608.CrossRefGoogle Scholar
  6. 6.
    Masten MK. Inertially stabilized platforms for optical imaging systems. IEEE Control Syst. 2008;28(1):47–64.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hilkert J. Inertially stabilized platform technology concepts and principles. IEEE Control Syst. 2008;28(1):26–46.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Meijer G. Smart sensor systems. Wiley; 2008.Google Scholar
  9. 9.
    Meijer G, Makinwa K, Pertijs M. Smart sensor systems: emerging technologies and applications. Wiley; 2014.Google Scholar
  10. 10.
    Sun H, Jia K, Liu X, Yan G, Hsu Y-W, Fox RM, Xie H. A CMOS-MEMS gyroscope interface circuit design with high gain and low temperature dependence. IEEE Sensors J. 2011;11(11):2740–8.CrossRefGoogle Scholar
  11. 11.
    Ezekwe C, Geiger W, Ohms T. A 3-axis open-loop gyroscope with demodulation phase error correction. In: Proceedings of IEEE international solid-state circuits conference, San Francisco, 2015.Google Scholar
  12. 12.
    Prandi L, et al. A low-power 3-axis digital-output MEMS gyroscope with single drive and multiplexed angular rate readout. In: Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, 2011.Google Scholar
  13. 13.
    Aaltonen L, Kalanti A, Pulkkinen M, Paavola M, Kamarainen M, Halonen KAI. A 2.2 mA 4.3 mm ASIC for a 1000°/s 2 – Axis capacitive micro-gyroscope. IEEE J Solid State Circuits. 2011;46(7):1682–92.CrossRefGoogle Scholar
  14. 14.
    Aaltonen L, Halonen KAI. Pseudo-continuous-time readout circuit for a 300°/s capacitive 2-axis micro-gyroscope. IEEE J Solid State Circuits. 2009;44(2):3609–20.CrossRefGoogle Scholar
  15. 15.
    Chen F, Li X, Kraft M. Electromechanical sigma–delta modulators force feedback interfaces for capacitive MEMS inertial sensors: a review. IEEE Sensors J. 2016;16(17):6476–95.CrossRefGoogle Scholar
  16. 16.
    Rombach S, Marx M, Nessler S, Dorigo DD, Maurer M, Manoli Y. An interface ASIC for MEMS vibratory gyroscopes with a power of 1.6 mW, 92 dB DR and 0.007°/s/ vHz noise floor over a 40 Hz band. IEEE J Solid State Circuits. 2016;51(8):1915–27.CrossRefGoogle Scholar
  17. 17.
    Tan Z, Nguyen K, Yan J, Samuels H, Keating S, Crocker P, Clark B. A dual-axis MEMS vibratory gyroscope ASIC with 0.0061°/s/VHz noise floor over 480 Hz bandwidth. In: 2017 IEEE Asian Solid-State Circuits Conference (A-SSCC), Seoul, 2017.Google Scholar
  18. 18.
    Gozzini F, Ferrari G, Sampietro M. Linear transconductor with rail-to-rail input swing for very large time constant applications. Electron Lett. 2006;42(19):1069–70.CrossRefGoogle Scholar
  19. 19.
    Tan Z, Daamen R, Humbert A, Ponomarev YV, Chae Y, Pertijs MAP. A 1.2-V 8.3-nJ CMOS humidity sensor for RFID applications. IEEE J Solid State Circuits. 2013;48(10):2469–77.CrossRefGoogle Scholar
  20. 20.
    Souri K, Chae Y, Makinwa KAA. A CMOS temperature sensor with a voltage-calibrated inaccuracy of ±0.15°C from −55°C to 125°C. IEEE J Solid State Circuits. 2013;48(1):292–301.CrossRefGoogle Scholar
  21. 21.
    Schreier R, Temes GC. Understanding delta-sigma data converters. Wiley-IEEE Press; 2004.Google Scholar
  22. 22.
    Silva J, Moon U, Steensgaard J, Temes G. Wideband low distortion delta-sigma ADC topology. Electron Lett. 2001;37(12):737–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Analog Devices, Inc.WilmingtonUSA

Personalised recommendations