Advertisement

Ultra-Low-Power Clock Generation for IoT Radios

  • Ming DingEmail author
  • Pieter Harpe
  • Zhihao Zhou
  • Yao-Hong Liu
  • Christian Bachmann
  • Kathleen Philips
  • Fabio Sebastiano
  • Arthur van Roermund
Chapter

Abstract

Duty-cycling is required to reduce the overall power consumption in IoT systems to extend the battery lifetime, which requires ultra-low-power clock generations. In this work, both the role of clocking in the whole system and the technical challenges for on-demand burst-mode operation will be discussed. In addition, an overview of state-of-the-art low-energy clock generation techniques and their performance trade-offs in terms of frequency, stability, and noise will be provided. As an example, we will show two clock generation circuits to illustrate how the challenges can be addressed.

References

  1. 1.
    Liu H et al. An ADPLL-centric bluetooth low-energy transceiver with 2.3mW interference-tolerant hybrid-loop receiver and 2.9mw single-point polar transmitter in 65nm CMOS. In: IEEE ISSCC Digest of Technical Papers; San Francisco 2018. p. 444–5.Google Scholar
  2. 2.
    Ding M et al. A 0.8V 0.8mm2 bluetooth 5/BLE digital-intensive transceiver with a 2.3mW phase-tracking RX utilizing a hybrid loop filter for interference resilience in 40nm CMOS. In: IEEE ISSCC Digest of Technical Papers; San Francisco 2018. p. 446–7.Google Scholar
  3. 3.
    Jiang H et al. A 4.5nW wake-up radio with −69dBm sensitivity. In: IEEE ISSCC Digest of Technical Papers; San Francisco 2017. p. 416–7.Google Scholar
  4. 4.
    Ding M, et al. A 2.4GHz BLE-compliant fully-integrated wakeup receiver for latency-critical IoT applications using a 2-dimensional wakeup pattern in 90nm CMOS. In: IEEE RFIC; Hawaii 2017. p. 168–71.Google Scholar
  5. 5.
    Griffith D et al. A 190nW 33kHz RC oscillator with 0.21% temperature stability and 4ppm long-term stability. In: IEEE ISSCC Digest of Technical Papers; San Francisco 2014. p. 300–1.Google Scholar
  6. 6.
    Paidimarri A, et al. A +10dBm 2.4GHz transmitter with sub-400pW leakage and 43.7% system efficiency. In: IEEE ISSCC Digest of Technical Papers; San Francisco 2015. p. 246–7.Google Scholar
  7. 7.
    Savanth T et al. A 280nW, 100kHz, 1-cycle start-up time, on-chip CMOS relaxation oscillator employing a feedforward period control scheme. In: IEEE VLSI Symposium; Hawaii 2016. p. 16–7.Google Scholar
  8. 8.
    Wang H et al. A reference-free capacitive-discharging oscillator architecture consuming 44.4pW/75.6nW at 2.8Hz/6.4kHz. IEEE J Solid-State Circuits. 2016;51(6):1423–35.CrossRefGoogle Scholar
  9. 9.
    Drago S et al. Impulse-based scheme for crystal-less ULP radios. IEEE Trans Circuits Syst I. 2009;56(5):1041–52.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Liu YH et al. A 3.7mW-RX 4.4mW-TX fully integrated bluetooth low-energy/ IEEE802.15.4/proprietary SoC with an ADPLL-based fast frequency offset compensation in 40nm CMOS. In: IEEE ISSCC Digest of Technical Papers; San Francisco 2015. p. 236–7.Google Scholar
  11. 11.
    B. S. I. G. (SIG). 2016 Specification of the bluetooth system, core package version 5.0, bluetooth specifications, bluetooth special interest group (sig). [Online]. Available: https://www.bluetooth.org/en-us/specification.
  12. 12.
    Griffith D et al. A 24MHz crystal oscillator with robust fast start-up using dithered injection. In: IEEE ISSCC Digest of Technical Papers; San Francisco 2016. p. 104–5.Google Scholar
  13. 13.
    Kashmiri SM, Pertijs MAP, Makinwa KAA. A thermal-diffusivity-based frequency reference in standard CMOS with an absolute inaccuracy of ±0.1% from −55oC to 125oC. IEEE J Solid-State Circuits. 2010;45(12):2510–20.CrossRefGoogle Scholar
  14. 14.
    Cao Y, Leroux P, Cock WD, Steyaert M. A 63,000 Q-factor relaxation oscillator with switched-capacitor integrated error feedback. In: IEEE ISSCC Digest of Technical Papers; San Francisco 2013. p. 186–7.Google Scholar
  15. 15.
    Gurleyuk C et al. A CMOS Dual-RC frequency reference with ±250ppm inaccuracy from −45oC to 85oC. In: IEEE ISSCC Digest of Technical Papers; San Francisco 2018. p. 54–5.Google Scholar
  16. 16.
    Iguchi S et al. Variation-tolerant quick-start-up CMOS crystal oscillator with chirp injection and negative resistance booster. IEEE J Solid-State Circuits. 2016;51(2):496–507.CrossRefGoogle Scholar
  17. 17.
    Satoh Y, Kobayashi H, Miyaba T, Kousai S. A 2.9mW, + /−85ppm accuracy reference clock generator based on RC oscillator with on-chip temperature calibration. In: VLSI Symposium; Hawaii 2014. p. 1–2.Google Scholar
  18. 18.
    Sebastiano F et al. A 65-nm CMOS temperature-compensated mobility-based frequency reference for wireless sensor networks. IEEE J Solid-State Circuits. 2011;46(7):1544–52.CrossRefGoogle Scholar
  19. 19.
    Sebastiano F et al. Mobility-based time references for wireless sensor networks. In: Ismail M, Sawan M, editors. Analog circuits and signal processing. New York: Springer; 2013.Google Scholar
  20. 20.
    Ruffieux D, Pengg F, Scolari N, Giroud F, Severac D, Le T, Piazza SD, Aubry O. A 3.2×1.5×0.8mm3 240nA 1.25-to-5.5V 32kHz-DTCXO RTC module with an overall accuracy of ±1ppm and an all-digital 0.1ppm compensation-resolution scheme at 1Hz. In: IEEE ISSCC Digest of Technical Papers; San Francisco 2016. p. 208–9.Google Scholar
  21. 21.
    Perrott M et al. A temperature-to-digital converter for a MEMS-based programmable oscillator with <  ±0.5-ppm frequency stability and <  1-ps integrated jitter. IEEE J Solid-State Circuits. 2013;48(1):276–91.CrossRefGoogle Scholar
  22. 22.
    Zaliasl S et al. A 3 ppm 1.5×0.8mm2 1.0μA 32.768kHz MEMS-based oscillator. IEEE J Solid-State Circuits. 2015;50(1):291–302.CrossRefGoogle Scholar
  23. 23.
    Griffith D et al. A 37μW dual-mode crystal oscillator for single-crystal radios. In IEEE ISSCC Digest of Technical Papers; San Francisco 2015. p. 104–5.Google Scholar
  24. 24.
    Ding M et al. A 0.7-V 0.43-pJ/cycle wakeup timer based on a bang-bang digital-intensive frequency-locked-loop for IoT applications. IEEE Solid-State Circuits Lett (SSCL). 2018;1(2):30–3.CrossRefGoogle Scholar
  25. 25.
    Koo J et al. A quadrature relaxation oscillator with a process-induced frequency-error compensation loop. In: IEEE ISSCC Digest of Technical Papers; San Francisco 2017. p. 94–5.Google Scholar
  26. 26.
    Savanth A et al. A 0.68nW/kHz supply-independent relaxation oscillator with 0.49% ∕V and 96ppm∕oC stability. In: IEEE ISSCC Digest of Technical Papers; San Francisco 2017. p. 96–7.Google Scholar
  27. 27.
    Lee J et al. A 4.7MHz 53μW fully differential CMOS reference clock oscillator with 22dB worst-case PSNR for miniaturized SoCs. In: IEEE ISSCC Digest of Technical Papers; San Francisco 2015. p. 106–7.Google Scholar
  28. 28.
    Jang T et al. A 4.7nW 13.8ppm∕oC self-biased wakeup timer using a switched-resistor scheme. In: IEEE ISSCC Digest of Technical Papers; San Francisco 2016. p. 102–3.Google Scholar
  29. 29.
    Choi M et al. A 110nW resistive frequency locked on-chip oscillator with 34.3ppm∕oC temperature stability for system-on-chip designs. IEEE J Solid-State Circuits. 2016;51(9):2106–18.CrossRefGoogle Scholar
  30. 30.
    Ding M, et al. A 95μW 24MHz digitally controlled crystal oscillator for IoT applications with 36nJ start-up energy and > 13× start-up time reduction using a fully-autonomous dynamically-adjusted load. In: IEEE ISSCC Digest of Technical Papers; San Francisco 2017. p. 90–1.Google Scholar
  31. 31.
    Vittoz EA, Degrauwe MGR, Bitz S. High-performance crystal oscillator circuits: theory and application. IEEE J Solid-State Circuits. 1988;23(3):774–83.CrossRefGoogle Scholar
  32. 32.
    Karthaus U. A differential two-pin crystal oscillator-concept, analysis, and implementation. IEEE Trans Circuits Syst II. 2006;53(10):1073–77.CrossRefGoogle Scholar
  33. 33.
    Kwon Y-I, Park S-G, Park T-J, Cho K-S, Lee H-Y. An ultra low-power CMOS transceiver using various low-power techniques for LR-WPAN applications. IEEE Trans Circuits Syst I. 2012;59(2):324–36.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Esmaeelzadeh H, Pamarti S. A precisely-timed energy injection technique achieving 58/10/2μs start-up in 1.84/10/50MHz crystal oscillators. In: IEEE Custom Integrated Circuits Conference (CICC); Austin, USA 2017, p. 1–4.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ming Ding
    • 1
    • 2
    Email author
  • Pieter Harpe
    • 3
  • Zhihao Zhou
    • 4
  • Yao-Hong Liu
    • 1
  • Christian Bachmann
    • 1
  • Kathleen Philips
    • 1
  • Fabio Sebastiano
    • 4
  • Arthur van Roermund
    • 3
  1. 1.Holst Centre/imecEindhovenNetherlands
  2. 2.Eindhoven University of TechnologyEindhovenNetherlands
  3. 3.Eindhoven University of TechnologyEindhovenThe Netherlands
  4. 4.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations