Design of Powerful DCDC Converters with Nanopower Consumption

  • Vadim IvanovEmail author


Presented are structural and circuit techniques for DCDC converters with consumption below power switch leakage and having efficiency above 80% at load currents from few μA to 100 s of mA. These techniques have been used in industrial ICs of energy harvesting systems, in the wireless sensor network power management, and in IoT electronics. Considered are process selection, transistor sizing for nA currents, biasing, voltage references, active rectifiers, comparators, oscillators, error amplifiers, and inductor current measurement, followed by selection of the DCDC operation mode and IC design examples.


  1. 1.
  2. 2.
    Ivanov V, Filanovsky I. Operational amplifier speed and accuracy improvement. Kluwer; 2004.
  3. 3.
    Mason S. Feedback theory – further properties of the signal flow graphs. Proc IRE. 1956;44(7):920–6.CrossRefGoogle Scholar
  4. 4.
    Shmid H-P. Circuit transposition using signal-flow graphs. Proc ISCAS. 2002;2:25–8.Google Scholar
  5. 5.
    Попов Е. Теория линейных систем автоматического управления. (E. Popov, “Linear system control theory”), Moscow, Nauka, 1988, in Russian.Google Scholar
  6. 6.
    Milev M, Burt R. Tool and methodology for AC-stability analysis of continuous-time closed-loop systems. Proceedings of DATE-2005.Google Scholar
  7. 7.
    Ivanov V, Filanovsky I. A 110 dB PSRR/CMRR/gain CMOS micropower operational amplifier. ISCAS-2005.Google Scholar
  8. 8.
    Polya G. How to solve it. Princeton University Press; 1971, Princeton, New Jersey, USA.Google Scholar
  9. 9.
    O’Connor J, McDermott I. The art of systems thinking. Thorsons; 1997, London, UK.Google Scholar
  10. 10.
    Williams J, editor. Analog circuit design. Oxford, UK: Butterworth-Heinemann; 1991.Google Scholar
  11. 11.
    Ahuja B, Vu H, Laber C, Oven W. A very high precision 500-nA CMOS floating-gate analog voltage reference. JSSC. 2005;40(12):2364–72.Google Scholar
  12. 12.
    Rincon-Mora G, Allen P. A low-voltage, low quiescent current. Low drop-out regulator. JSSC. 1998;33(1):36–44.Google Scholar
  13. 13.
    Ivanov V, Baum D. Slew rate boost circuitry and method, US patent 6,437,645, 2002.Google Scholar
  14. 14.
    Allen P, Holberg D. CMOS analog circuit design. 3rd ed. Oxford; 2012.Google Scholar
  15. 15.
    Nanda S, Panda A, Moganti G. A Novel design of a high speed hysteresis-based comparator in 90-nm CMOS technology. ICIP 2015, IEEE.Google Scholar
  16. 16.
    Ivanov V, Venkataraman H, King D. Adjustable speed comparator, US patent 8482317, 2013.Google Scholar
  17. 17.
    Kislovsky A, Redl R, Sokal N. Dynamic analysis of switching mode DC/DC converters. Van Nostrand Reinhold; 1991,
  18. 18.
    Kadirvel K, et al. A 330nA energy-harvesting charger with battery management for solar and thermoelectric energy harvesting. ISSCC 2012, pp. 106–8.Google Scholar
  19. 19.
    Solis C, Rincon-Mora G. 0.6-μm CMOS-switched-inductor dual-supply hysteretic current-mode buck converter. IEEE TPE. 2017;32(3):2387–94.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Texas Instruments Inc.TucsonUSA

Personalised recommendations