Energy-Efficient Inverter-Based Amplifiers

  • Youngcheol ChaeEmail author


The continuous feature size scaling in CMOS has enabled the system to decrease power consumption. However, the operational amplifiers, which have been the backbone of analog circuits, face significant challenges in the scaled CMOS technology. Dynamic amplifiers based on CMOS inverters attract again and have become essential to maximize energy efficiency in all analog building blocks. This chapter discusses the design of energy-efficient inverter-based amplifiers that include operating principle and biasing techniques. It also covers recent advances to prevent performance degradation of inverter-based circuits and design examples of the state-of-the-art inverter-based amplifiers.


  1. 1.
    Sansen WMC. Low-noise energy-efficient amplifier design ISSCC Forum: advanced IC design for ultra low-noise sensing, 2016.Google Scholar
  2. 2.
    Sansen WMC. Opamps, Efficient Sensor Interfaces, Advanced Amplifiers and Low Power RF Systems, Opamps, Gm-Blocks or Inverters?. AACD 2015, Springer; 2016.CrossRefGoogle Scholar
  3. 3.
    Copeland MA, Rabaey JM. Dynamic amplifier for MOS technology. Electron Lett. 1979;15(10):301–2.CrossRefGoogle Scholar
  4. 4.
    Hosticka BJ. Dynamic CMOS amplifiers. IEEE J Solid State Circuits. 1980;SC-15(5):887–94.Google Scholar
  5. 5.
    Krummenacher F, Vittoz E. Class-AB CMOS amplifier for micropower SC filters. Electron Lett. 1981;17(13):433–4.CrossRefGoogle Scholar
  6. 6.
    Chae Y, Han G. Low voltage, low power inverter-based switched-capacitor delta-sigma modulator. IEEE J SolidState Circuits. 2009;24(2):458–72.CrossRefGoogle Scholar
  7. 7.
    Chae Y, Han G. A low power sigma-delta modulator using class-C inverter. Symposium on VLSI Circuits, June 2007, p. 240–1.Google Scholar
  8. 8.
    Chae Y, Lee I, Han G. A 0.7-V 36-μW 85 dB-DR audio ΔΣ modulator using class-C inverter. ISSCC, Feb 2008, p. 490–1.Google Scholar
  9. 9.
    Lee I, Han G, Chae Y. A 2mW, 50dB DR, 10MHz BW 5× interleaved bandpass delta-sigma modulator at 50 MHz IF. IEEE Trans Circuits Syst I. 2015;62(1):80–9.CrossRefGoogle Scholar
  10. 10.
    van Veldhoven RHM, Rutten R, Breems LJ. An inverter-based hybrid ΣΔ modulator. ISSCC, Feb 2008, p. 492–3.Google Scholar
  11. 11.
    Krummenacher F. Micropower switched capacitor biquadratic cell. IEEE J Solid State Circuits. 1981;SC-17(3):507–12.CrossRefGoogle Scholar
  12. 12.
    Michel F, Steyaert MSJ. A 250 mV 7.5 μW 61 dB SNDR SC ΔΣ modulator using near-threshold-voltage-biased inverter amplifiers in 130 nm CMOS. IEEE J Solid State Circuits. 2012;47(3):709–21.CrossRefGoogle Scholar
  13. 13.
    Wang J, Matsuoka T, Taniguchi K. A 0.5 V feedforward delta-sigma modulator with inverter-based integrator. In: Proc. ESSCIRC, Sept 2009, p. 328–31.Google Scholar
  14. 14.
    Chae Y, Souri K, Makinwa KAA. A 6.3 μW 20 bit incremental zoom-ADC with 6ppm INL and 1μV offset. IEEE J Solid State Circuits. 2013;48(12):3019–27.CrossRefGoogle Scholar
  15. 15.
    Lee S, Jo W, Song S, Chae Y. A 300-μW audio ΔΣ modulator with 100.5-dB DR using dynamic bias inverter. IEEE Trans Circuits Syst I. 2016;63(11):1866–75.CrossRefGoogle Scholar
  16. 16.
    Gonen B, Sebastiano F, Quan R, van Veldhoven R, Makinwa KAA. A dynamic zoom ADC with 109-dB DR for audio applications. IEEE J SolidState Circuits. 2017;52(6):1542–50.CrossRefGoogle Scholar
  17. 17.
    Nauta B. A CMOS transconductance-C filter technique for very high frequencies. IEEE J Solid State Circuits. 1992;27:142–53.CrossRefGoogle Scholar
  18. 18.
    Christen T. A 15-bit 140-μW scalable-bandwidth inverter-based ΔΣ modulator for a MEMS microphone with digital output. IEEE J Solid State Circuits. 2013;48(7):1605–14.CrossRefGoogle Scholar
  19. 19.
    Breems, L. et al. A 2.2 GHz continuous-time ΔΣ ADC with −102 dBc THD and 25 MHz bandwidth. IEEE J Solid State Circuits. 2016;51(12):2906–16.CrossRefGoogle Scholar
  20. 20.
    Luo H, Han Y, Cheung RC, Liu X, Cao T. A 0.8-V 230-μW 98-dB DR inverter-based ΣΔ modulator for audio applications. IEEE J Solid State Circuits. 2013;48(10):2430–41.CrossRefGoogle Scholar
  21. 21.
    Lechevallier J, Struiksma R, Sherry H, Cathelin A, Klumperink E, Nauta B. A forward-body-bias tuned 450MHz Gm-C 3rd-order low-pass filter in 28nm UTBB FD-SOI with >1dBVp IIP3 over a 0.7-to-1V supply. ISSCC, 2015, p. 96–7.Google Scholar
  22. 22.
    Chae Y, Cheon J, Lim S, Kwon M, Yoo K, Jung W, Lee DH, Ham S, Han G. A 2.1 M Pixels, 120 frame/s CMOS image sensor with column-parallel ΔΣ ADC architecture. IEEE J Solid State Circuits. 2011;46(1):236–47.CrossRefGoogle Scholar
  23. 23.
    Gregoire B, Moon U-K. An over-60 dB true rail-to-rail performance using correlated level shifting and an opamp with only 30 dB loop gain. IEEE J Solid State Circuits. 2008;43(12):2620–30.CrossRefGoogle Scholar
  24. 24.
    Zhang H, Tan Z, Nguyen K. Inverter-based low-power delta–sigma modulator using correlated level shifting technique. Electron Lett. 2017;53(25):1163–4.Google Scholar
  25. 25.
    Hershberg B, Weaver S, Sobue K, Takeuchi S, Hamashita K, Moon Ring U-K. Amplifiers for switched capacitor circuits. IEEE J Solid-State Circuits. 2012;47(12):2928–42.CrossRefGoogle Scholar
  26. 26.
    Lim Y, Flynn MP. A 100 MS/s, 10.5 bit, 2.46 mW comparator-less pipeline ADC using self-biased ring amplifiers. IEEE J Solid State Circuits. 2015;50(10):2331–41.CrossRefGoogle Scholar
  27. 27.
    Lim Y, Flynn MP. A calibration-free 2.3 mW 73.2 dB SNDR 15b 100 MS/s four-stage fully differential ring amplifier based SAR-assisted pipeline ADC. Symposium on VLSI Circuits, 2017, p. C98–9.Google Scholar
  28. 28.
    Kim JK-R, Murmann B. A 12-b, 30-MS/s, 2.95-mW pipelined ADC using single-stage class-AB amplifiers and deterministic background calibration. IEEE J Solid State Circuits. 2012;47(9):2141–51.CrossRefGoogle Scholar
  29. 29.
    Verbruggen B, Deguchi K, Malki B, Craninckx J. A 70 dB SNDR 200 MS/s 2.3 mW dynamic pipelined SAR ADC in 28nm digital CMOS. Symposium on VLSI Circuits, 2014.Google Scholar
  30. 30.
    Akter MS, Makinwa KAA, Bult K. A capacitively degenerated 100-dB linear 20–150 MS/s dynamic amplifier. IEEE J Solid State Circuits. 2018;53:1115–26.CrossRefGoogle Scholar
  31. 31.
    Gregorian R. High-resolution switched-capacitor D/A converter. J Microelectron. 1981;12:10–13.CrossRefGoogle Scholar
  32. 32.
    Nagaraj K, Vlach J, Viswanathan TR, Singhal K. Switched-capacitor integrator with reduced sensitivity to amplifier gain. Electron Lett. 1986;22(21):1103–5.CrossRefGoogle Scholar
  33. 33.
    Shen L, Lu N, Sun N. A 1-V 0.25-μW inverter stacking amplifier with 1.07 noise efficiency factor. IEEE J Solid State Circuits. 2018;53(3):896–905.CrossRefGoogle Scholar
  34. 34.
    Lin J, Miyahara M, Matsuzawa A. A 15.5 dB, wide signal swing, dynamic amplifier using a common-mode voltage detection technique. In: Proc. IEEE Int. Symp. Circuits Syst, 2011, p. 21–4.Google Scholar
  35. 35.
    van der Goes F, Ward CM, Astgimath S, Yan H, Riley J, Zeng Z, Mulder J, Wang S, Bult K. A 1.5 mW 68 dB SNDR 80 Ms/s 2 interleaved pipelined SAR ADC in 28 nm CMOS. IEEE J Solid State Circuits. 2014;49(12):2835–45.Google Scholar
  36. 36.
    Chiang S-H, Sun H, Razavi B. A 10-Bit 800-MHz 19-mW CMOS ADC. IEEE J Solid State Circuits. 2014;49(4):935–49.CrossRefGoogle Scholar
  37. 37.
    Iguchi S, Sakurai T, Takamiya M. A low-power CMOS crystal oscillator using a stacked-amplifier architecture. IEEE J Solid State Circuits. 2017;52(11):3006–17.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Electrical and Electronic EngineeringYonsei UniversitySeoulSouth Korea

Personalised recommendations