Advertisement

High-Efficiency Residue Amplifiers

  • Klaas BultEmail author
  • Md. Shakil Akter
  • Rohan Sehgal
Chapter

Abstract

A comprehensive method for power estimation of residue amplifiers is presented. Using this method a definition of power efficiency is given, which subsequently is used to analyze recently published, highly efficient residue amplifiers. Design parameters are identified which have a key influence on the power efficiency, and design choices based on power efficiency are discussed. It is shown that the most power-efficient residue amplifier topologies share the same core circuit and differ primarily in how this core circuit is driven from the input. Finally, an overview is given of these topologies, ranked on power efficiency.

References

Classic High-Gain OpAmp with Feedback

  1. 1.
    Lewis SH, Gray PR. A pipelined 5MHz 9b ADC. Digest of technical papers, ISSCC; 1987.Google Scholar
  2. 2.
    Sutarja S, et al. A pipelined 13-bit, 250-ks/s, 5-V analog-to-digita1 converter. IEEE J Solid-State Circuits. 1988;23(6):1316–23.CrossRefGoogle Scholar

Power Estimation Analog Circuits

  1. 3.
    Bult K. The effects of technology scaling on power dissipation of analog circuits. AACD; 2005.Google Scholar

Weak-Inversion Operation

  1. 4.
    Enz C, et al. Charge-based MOS transistor modeling: the EKV model for low-power and RF IC design. Chichester: Wiley; 2006.CrossRefGoogle Scholar

Folded-Cascode OpAmp

  1. 5.
    Lee H-S, Gray PR. A self-calibrating 15 bit CMOS A/D converter. IEEE J Solid-State Circuits. 1984;19(6):813–9.CrossRefGoogle Scholar

Push-Pull Residue Amplifiers

  1. 6.
    Brunsilius J. et al. A 16b 80MS/s 100mW 77.6dB SNR CMOS pipeline ADC. Digest of technical papers, ISSCC; 2011.Google Scholar
  2. 7.
    Kim J, et al. A 12-b, 30-MS/s, 2.95-mW pipel. ADC using single-stage class-AB amplifiers and deterministic background calibr. IEEE J Solid-State Circuits. 2012;47(9):2141–51.CrossRefGoogle Scholar

Incomplete Settling

  1. 8.
    Iroaga E, Murmann B. A 12-bit 75-MS/s pipelined ADC using incomplete settling. IEEE J Solid-State Circuits. 2007;42(4):748–56.CrossRefGoogle Scholar
  2. 9.
    Akter MS, et al. A 66 dB SNDR pipelined split-ADC using class-AB residue amplifier with analog gain correction. Conference proceedings ESSCIRC 2015; 2015.Google Scholar

Dynamic Amplifiers

  1. 10.
    Verbruggen B, et al. A 2.6mW 6b 2.2GS/s 4-times interleaved fully dynamic pipelined ADC in 40nm digital CMOS. Digest of technical papers, ISSCC 2010; 2010, p. 296–7.Google Scholar
  2. 11.
    Verbruggen B, et al. A 2.6 mW 6 bit 2.2 GS/s fully dynamic pipeline ADC in 40 nm digital CMOS. IEEE J Solid-State Circuits. 2010;45(10):2080–90.CrossRefGoogle Scholar
  3. 12.
    Lin J, et al. A 15.5 dB, wide signal swing, dynamic amplifier using a common-mode voltage detection technique. Circuits and systems (ISCAS), 2011 IEEE international symposium, 15–18 May 2011, p. 21, 24.Google Scholar
  4. 13.
    Verbruggen B et al. A 1.7mW 11b 250MS/s 2∼ interleaved fully dynamic pipelined SAR ADC in 40nm digital CMOS. Digest of technical papers, ISSCC 2012.Google Scholar
  5. 14.
    Verbruggen B, et al. A 2.1 mW 11b 410 MS/s dynamic pipelined SAR ADC with background calibration in 28nm digital CMOS. Digest of technical papers, Symposium on VLSI circuits; 2013.Google Scholar
  6. 15.
    Lin J, et al. An ultra-low-voltage 160 MS/s 7 bit interpolated pipeline ADC using dynamic amplifiers. IEEE J Solid-State Circuits. 2015;50(6):1399–411.CrossRefGoogle Scholar
  7. 16.
    Akter MS, Makinwa KAA, Bult K. A capacitively degenerated 100-dB linear 20–150 MS/s dynamic amplifier. IEEE J Solid-State Circuits. 2018 53(4):1115--1126.CrossRefGoogle Scholar

Low Power Calibration

  1. 17.
    Sehgal R, et al. A 12b 53 mW 195 MS/s pipeline ADC with 82dB SFDR using split-ADC calibration. IEEE J Solid-State Circuits. 2015;50(7):1592–603.CrossRefGoogle Scholar

Cascoded Dynamic Amplifier

  1. 18.
    Goes Fvd, et al. A 1.5mW 68dB SNDR 80MS/s 2x interleaved SAR-assisted pipelined ADC in 28nm CMOS. Digest of technical papers, ISSCC 2014; 2014.Google Scholar

Up/Down Integration

  1. 19.
    Malki B, et al. A complementary dynamic residue amplifier for a 67 dB SNDR 1.36 mW 170 MS/s pipelined SAR ADC. Conference proceedings ESSCIRC; 2014.Google Scholar

Zero-Crossing-Based Circuits

  1. 20.
    Brooks L, Lee H-S. A zero-crossing-based 8b 200MS/s pipelined ADC. Digest of technical papers, ISSCC; 2007.Google Scholar
  2. 21.
    Sepke T, et al. Noise analysis for comparator-based circuits. IEEE J Solid-State Circuits. 2009;56(3):541–53.MathSciNetGoogle Scholar
  3. 22.
    Chang D-Y, et al. A 21mW 15b 48MS/s zero-crossing pipeline ADC in 0.13μ m CMOS with 74dB SNDR. Digest of technical papers, ISSCC; 2014.Google Scholar
  4. 23.
    Shin S-K, et al. A 12 bit 200 MS/s zero-crossing-based pipelined ADC with early sub-ADC decision and output residue background calibration. IEEE J Solid-State Circuits. 2014;49:1366–82.CrossRefGoogle Scholar

Complementary Dynamic Amplifier

  1. 24.
    Verbruggen B, et al. A 70 dB SNDR 200 MS/s 2.3 mW dynamic pipelined SAR ADC in 28nm digital CMOS. Digest of technical papers, Symposium on VLSI Circuits; 2014.Google Scholar

Ring Amplifiers

  1. 25.
    Hershberg B, et al. Ring amplifiers for switched-cap. circuits. Digest of technical papers, ISSCC; 2012.Google Scholar
  2. 26.
    Hershberg B, Moon U-K. A 75.9dB-SNDR 2.96mW 29fJ/conv-step ringamp-only pipelined ADC. Digest of technical papers, Symposium on VLSI circuits; 2013.Google Scholar

Linearization

  1. 27.
    Sehgal R, et al. A 13mW 64dB SNDR 280MS/s pipelined ADC using linearized open-loop class-AB amplifiers. Conference proceedings ESSCIRC 2017; 2017.Google Scholar
  2. 28.
    Akter S, et al. A capacitively-degenerated 100dB linear 20-150MS/s dynamic amplifier. Digest of technical papers, Symposium on VLSI circuits; 2017.Google Scholar
  3. 29.
    Sehgal R, et al. A 13mW 64dB SNDR 280MS/s pipelined ADC using linearized integrating amplifiers. IEEE J Solid-State Circuits. 2018;53(7): 1878--1888.Google Scholar

Open-Loop Amplifiers

  1. 30.
    Murmann B, Boser B. A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification. IEEE J Solid-State Circuits. 2003;38(12):2040–50.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Analog Design Consult B.V.Bosch en DuinNetherlands
  2. 2.Broadcom Netherlands B.V.BunnikNetherlands

Personalised recommendations