Mechanism of Compensation After Unilateral Loss

  • Si Chen
  • Eric WilkinsonEmail author


A variety of etiologies are responsible for loss of vestibular function. These include aging, head trauma, ototoxic drugs, infection, inflammation, or tumors. Unilateral peripheral vestibular weakness affects a patient’s posture, oculomotor control, spatial perception, and navigation. Patients experience postural asymmetry and gait problems related to impaired vestibulospinal reflex, visual disturbances as a result of impaired vestibular-ocular reflex, and internal spatial disorientation. Most patients recover functionally over weeks and months through a process called vestibular compensation. In unilateral peripheral vestibular loss, vestibular compensation engages neuronal and behavioral plasticity in the central nervous system to overcome the loss of unilateral vestibular input. The time course and exact mechanism of vestibular recovery depend on the etiology of vestibular loss and cannot be generalized for all patients. However, knowledge of several processes of vestibular compensation can guide the treatment and rehabilitation for unilateral vestibular loss.


Vertigo Vestibular compensation Vestibular rehab 


  1. 1.
    Balaban CD, Hoffer ME, Gottshall KR. Top-down approach to vestibular compensation: translational lessons from vestibular rehabilitation. Brain Res. 2012;1482:101–11.CrossRefGoogle Scholar
  2. 2.
    Becker-Bense S, Dieterich M, Buchholz HG, Bartenstein P, Schreckenberger M, Brandt T. The differential effects of acute right- vs left-sided vestibular failure on brain metabolism. Brain Struct Funct. 2014;219:1355–67.CrossRefGoogle Scholar
  3. 3.
    Bense S, Bartenstein P, Lochmann M, Schlindwein P, Brandt T, Dieterich M. Metabolic changes in vestibular and visual cortices in acute vestibular neuritis. Ann Neurol. 2004;56:624–30.CrossRefGoogle Scholar
  4. 4.
    Brandt T, Daroff RB. Physical therapy for benign paroxysmal positional vertigo. Arch Otolaryngol. 1980;106:484–5.CrossRefGoogle Scholar
  5. 5.
    Bronstein AM, Golding FJ, Gresty MA. Vertigo and dizziness from environmental motion: visual vertigo, motion sickness, and drivers’ disorientation. Semin Neurol. 2013;33:219–30.CrossRefGoogle Scholar
  6. 6.
    Chang WC, Yang YR, Hsu LC, Chern CM, Wang RY. Balance improvement in patients with benign paroxysmal positional vertigo. Clin Rehabil. 2008;22:338–47.CrossRefGoogle Scholar
  7. 7.
    Darlington CL, Smith PF. Molecular mechanisms of recovery from vestibular damage in mammals: recent advances. Prog Neurobiol. 2000;62:313–25.CrossRefGoogle Scholar
  8. 8.
    Deutschlander A, Hofner K, Kalla R, Stephan T, Dera T, Glausauer S. Unilateral vestibular failure suppresses cortical visual motion processing. Brain. 2008;131:1025–34.CrossRefGoogle Scholar
  9. 9.
    Deveze A, Bernard-Demanze L, Xavier F, Lavieille JP, Elziere M. Vestibular compensation and vestibular rehabilitation. Current concepts and new trends. Neurophysiol Clin. 2014;44(1):49–57.CrossRefGoogle Scholar
  10. 10.
    Dutheil S, Brezun M, Leonard J, Lacour M, Tighilet B. Neurogenesis and astrogenesis contribution to recovery of vestibular functions in the adult cat following unilateral vestibular neurectomy: cellular and behavioral evidence. Neuroscience. 2009;164:1444–56.CrossRefGoogle Scholar
  11. 11.
    Dutheil S, Lacour M, Tighilet B. Neurogenic potential of the vestibular nuclei and behavioural recovery time course in the adult cat are governed by the nature of the vestibular damage. PLoS One. 2011;6(8):e22262.CrossRefGoogle Scholar
  12. 12.
    Eckhard-Henn A, Best C, Bense S, Breuer P, Diener G, Tschan R, Dieterich M. Psychiatric comorbidity in different organic vertigo syndromes. J Neurol. 2008;255:420–8.CrossRefGoogle Scholar
  13. 13.
    Gliddon CM, Darlington CL, Smith PF. Activation of the hypothalamic-pituitary-adrenal axis following vestibular deafferentation in pigmented guinea-pigs. Brain Res. 2003;964:306–10.CrossRefGoogle Scholar
  14. 14.
    Helmchen C, Klinkenstein J, Machner B, Rambold H, Mohr C, Sander T. Structural changes in the human brain following vestibular neuritis indicate central vestibular compensation. Ann N Y Acad Sci. 2009;1164:104–15.CrossRefGoogle Scholar
  15. 15.
    Helmchen C, Klinkenstein JC, Kruger A, Gliemroth J, Mohr C, Sander T. Structural brain changes following peripheral vestibulo-cochlear lesion may indicate multisensory compensation. J Neurol Neurosurg Psychiatry. 2011;82:309–16.CrossRefGoogle Scholar
  16. 16.
    Helmchen C, Ye Z, Sprenger A, Munte TF. Changes in resting-state fMRI in vestibular neuritis. Brain Struct Funct. 2014;219:1889–900.CrossRefGoogle Scholar
  17. 17.
    Hong SK, Kim JH, Kim HJ, Lee HJ. Changes in the gray matter volume during compensation after vestibular neuritis: a longitudinal VBM study. Restor Neurol Neurosci. 2014;32:663–73.PubMedGoogle Scholar
  18. 18.
    Horak FB. Postural compensation for vestibular loss. Restor Neurol Neurosci. 2010;28:57–68.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Horii A, Masumura C, Smith PF, Darlington CL, Kitahara T, Uno A. Microarray of gene expression in the rat vestibular nucleus complex following unilateral vestibular deafferentation. J Neurochem. 2004;91:975–82.CrossRefGoogle Scholar
  20. 20.
    Horner KC, Cazals Y. Stress hormones in Meniere’s disease and acoustic neuroma. Brain Res Bull. 2005;66:1–8.CrossRefGoogle Scholar
  21. 21.
    Lacour M, Barthelemy J, Borel L, Magnan J, Xerri C, Chays A, Ouaknine M. Sensory strategies in human postural control before and after unilateral vestibular neurectomy. Exp Brain Res. 1997;115:300–10.CrossRefGoogle Scholar
  22. 22.
    Lacour M, Bernard-Demanze L. Interactions between vestibular compensation mechanisms and vestibular rehabilita- tion therapy: ten recommendations for optimal functional recovery. Front Neurol. 2014;5:285–97.PubMedGoogle Scholar
  23. 23.
    Lacour M, Helmchen C, Vidal PP. Vestibular compensation: the neuro-otologist’s best friend. J Neurol. 2016;263(Suppl 1):S54–64.CrossRefGoogle Scholar
  24. 24.
    Lacour M, Roll JP, Appaix M. Modifications and development of spinal reflexes in the alert baboon (Papio papio) following a unilateral vestibular neurotomy. Brain Res. 1976;113:255–69.CrossRefGoogle Scholar
  25. 25.
    Lacour M. Restoration of vestibular function: basic aspects and practical advances for rehabilitation. Curr Med Res Opin. 2010;22:1651–9.CrossRefGoogle Scholar
  26. 26.
    Liberge M, Manrique C, Bernard-Demanze L, Lacour M. Changes in TNFa, NFkB and MnSOD protein in the vestibular nuclei after unilateral deafferentation. J Neuroinflammation. 2010;7:91–102.CrossRefGoogle Scholar
  27. 27.
    Lopez C, Lacour M, Magnan J, Borel L. Visual field dependence-independence before and after unilateral vestibular loss. Neuroreport. 2006;17:797–803.CrossRefGoogle Scholar
  28. 28.
    MacDougall HG, Curthoys IS. Plasticity during vestibular compensation: the role of saccades. Front Neurol. 2012;3:21.CrossRefGoogle Scholar
  29. 29.
    Mijovic T, Carriot J, Zeitouni A, Cullen KE. Head movements in patients with vestibular lesion: a novel approach to functional assessment in daily life setting. Otol Neurotol. 2014;35(10):348–57.CrossRefGoogle Scholar
  30. 30.
    Nyabenda A, Briart C, Deggouj N, Gersdorff M. Benefit of rotational exercises for patients with Meniere’s syndrome, method used by the ENT department of St-Luc university clinic. Ann Readapt Med Phys. 2003;46:607–14.CrossRefGoogle Scholar
  31. 31.
    Olabi B, Bergquist F, Dutia MB. Rebalancing the commissural system: mechanisms of vestibular compensation. J Vestib Res. 2009;19:201–7.PubMedGoogle Scholar
  32. 32.
    Paterson JM, Short D, Flatman PW, Seckl JR, Aitken A, Dutia MB. Changes in protein expression in the rat medial vestibular nuclei during vestibular compensation. J Neurophysiol. 2006;575:777–88.Google Scholar
  33. 33.
    Ris L, de Waele C, Serafin M, Vidal PP, Godaux E. Neuronal activity in the ipsilateral vestibular nucleus following unilateral labyrinthectomy in the alert guinea pig. J Neurophysiol. 1995;74:2087–99.CrossRefGoogle Scholar
  34. 34.
    Saman Y, Bamiou DE, Gleeson M, Dutia MB. Interaction between stress and vestibular compensation: a review. Front Neurol. 2012;3:116.CrossRefGoogle Scholar
  35. 35.
    Smith PF, Curthoys IS. Neuronal activity in the ipsilateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy. Brain Res. 1988;444:308–19.CrossRefGoogle Scholar
  36. 36.
    Tighilet B, Brezun M, Gustav Dit Duflo S, Gaubert C, Lacour M. New neurons in the vestibular nuclei complex after unilateral vestibular neurectomy in the adult cat. Eur J Neurosci. 2007;25:47–58.CrossRefGoogle Scholar
  37. 37.
    Tighilet B, Manrique C, Lacour M. Stress axis plasticity during vestibular compensation in the cat. Neuroscience. 2009;160:716–30.CrossRefGoogle Scholar
  38. 38.
    Vibert N, Beraneck CAM, Bantikyan A, Vidal PP. Vestibular compensation modifies the sensitivity of vestibular neurons to inhibitory amino-acids. Neuroreport. 2000;11:1921–7.CrossRefGoogle Scholar
  39. 39.
    Zwergal A, Schlichtiger J, Xiong G, Beck R, Gunther L, Schniepp R, Schoberl F, Jahn K, Brandt T, et al. Sequential [18F] FDG lPET whole-brain imaging of central vestibular compensation: a model of deafferentation-induced brain plasticity. Brain Struct Funct. 2016;221(1):159–70.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Neurotology, House ClinicLos AngelesUSA

Personalised recommendations