Non-fluctuating Unilateral Vestibular Loss

  • Beth N. McNultyEmail author
  • Matthew L. Bush


Ablative insults to the vestibular sensory organ and/or the vestibular nerves result in a physiologic deficit of peripheral vestibular input to the brain. Unilateral physiologic change within the dynamic vestibular system results in the development of clinically apparent symptoms such as vertigo, motion-exacerbating dizziness, and visual disturbance. Insults that present either as an isolated event or as a progressive process ending in destruction of remaining ipsilateral vestibular function can be grouped into a category of physiological disorders referred to as a non-fluctuating unilateral vestibular loss. The loss of peripheral input leads to the activation of central vestibular compensatory mechanisms. Patients often present with vestibular symptoms during acute insults, but the intensity of the symptoms lessens during the compensation process. When central compensation is complete, patients with non-fluctuating unilateral vestibular loss are often asymptomatic. Impaired or delayed compensation will result in a chronic vestibulopathy with concomitant symptoms. Crucial aspects of the management of patients with these disorders include assessing the etiology of the vestibular loss, identifying impediments to compensatory mechanisms, and maximizing the central compensation process. This chapter assesses a variety of conditions, ranging from infectious to iatrogenic, that cause a non-fluctuating unilateral vestibular loss with attention given to the underlying pathophysiology, clinical assessment, and treatment options for common conditions within this category.


Unilateral vestibular loss Fixed vestibulopathy Vestibular rehabilitation 


  1. 1.
    Agrawal Y, Carey JP, Della Santina CC, Schubert MC, Minor LB. Disorders of balance and vestibular function in US adults: data from the National Health and Nutrition Examination Survey, 2001–2004. Arch Intern Med. 2009;169(10):938–44.CrossRefGoogle Scholar
  2. 2.
    Perez N, Garmendia I, Garcia-Granero M, Martin E, Garcia-Tapia R. Factor analysis and correlation between dizziness handicap inventory and dizziness characteristics and impact on quality of life scales. Acta Otolaryngol. 2001;545:145–54.Google Scholar
  3. 3.
    Gans RE. Vestibular rehabilitation: critical decision analysis. Semin Hear. 2002;23:149–59.CrossRefGoogle Scholar
  4. 4.
    Neuhauser HK. Epidemiology of vertigo. Curr Opin Neurol. 2007;20:40–6.CrossRefGoogle Scholar
  5. 5.
    Sekitani T, Imate Y, Noguchi T, Inokuma T. Vestibular neuronitis: epidemiological survey by questionnaire in Japan. Acta Otolaryngol. 1993;503:9–12.CrossRefGoogle Scholar
  6. 6.
    Renner V, Geißler K, Boeger D, Buentzel J, Esser D, Hoffmann K, Jecker P, Mueller A, Radtke G, Axer H, Guntinas-Lichius O. Inpatient treatment of patients admitted for dizziness: a population-based healthcare research study on epidemiology, diagnosis, treatment, and outcome. Otol Neurotol. 2017;38(10):e460–9.CrossRefGoogle Scholar
  7. 7.
    Arbusow V, Schulz P, Strupp M, Dieterich M, von Reinhardstoettner A, Rauch E, Brandt T. Distribution of herpes simplex virus type 1 in human geniculate and vestibular ganglia: implications for vestibular neuritis. Ann Neurol. 1999;46:416–9.CrossRefGoogle Scholar
  8. 8.
    Arbusow V, Strupp M, Wasicky R, Horn AK, Schulz P, Brandt T. Detection of herpes simplex virus type 1 in human vestibular nuclei. Neurology. 2000;55:880–2.CrossRefGoogle Scholar
  9. 9.
    Theil D, Arbusow V, Derfuss T, Strupp M, Pfeiffer M, Mascolo A, Brandt T. Prevalence of HSV-1 LAT in human trigeminal, geniculate, and vestibular ganglia and its implication for cranial nerve syndromes. Brain Pathol. 2001;11:408–13.CrossRefGoogle Scholar
  10. 10.
    Theil D, Derfuss T, Paripovic I, Herberger S, Meinl E, Schueler O, Strupp M, Arbusow V, Brandt T. Latent herpesvirus infection in human trigeminal ganglia causes chronic immune response. Am J Pathol. 2003;163:2179–84.CrossRefGoogle Scholar
  11. 11.
    Taylor RL, McGarvie LA, Reid N, Young AS, Halmagyi GM, Welgampola MS. Vestibular neuritis affects both superior and inferior vestibular nerves. Neurology. 2016;87:1704–12.CrossRefGoogle Scholar
  12. 12.
    Magliulo G, Gagliardi S, Ciniglio Appiani M, Iannella G, Re M. Vestibular neurolabyrinthitis: a follow-up study with cervical and ocular vestibular evoked myogenic potentials and the video head impulse test. Ann Otol Rhinol Laryngol. 2014;123:162–73.CrossRefGoogle Scholar
  13. 13.
    Chihara Y, Iwasaki S, Murofushi T, Yagi M, Inoue A, Fujimoto C, Egami N, Ushio M, Karino S, Sugasawa K, Yamasoba T. Clinical characteristics of inferior vestibular neuritis. Acta Otolaryngol. 2012;132:1288–94.CrossRefGoogle Scholar
  14. 14.
    Kim JS, Kim HJ. Inferior vestibular neuritis. J Neurol. 2012;259:1553–60.CrossRefGoogle Scholar
  15. 15.
    Gianoli G, Goebel J, Mowry S, Poomipannit P. Anatomic differences in the lateral vestibular nerve channels and their implications in vestibular neuritis. Otol Neurotol. 2005;26:489–94.CrossRefGoogle Scholar
  16. 16.
    Himmelein S, Lindemann A, Sinicina I, Horn AKE, Brandt T, Strupp M, Hüfner K. Differential involvement during latent herpes simplex virus 1 infection of the superior and inferior divisions of the vestibular ganglia: implications for vestibular neuritis. J Virol. 2017;91(14). Print 2017 Jul 15.Google Scholar
  17. 17.
    Fishman JM, Burgess C, Waddell A. Corticosteroids for the treatment of idiopathic acute vestibular dysfunction (vestibular neuritis). Cochrane Database Syst Rev. 2011;5:CD008607.Google Scholar
  18. 18.
    Strupp M, Zingler VC, Arbusow V, Niklas D, Maag KP, Dieterich M, Bense S, Theil D, Jahn K, Brandt T. Methylprednisolone, valacyclovir, or the combination for vestibular neuritis. N Engl J Med. 2004;351(4):354–61.CrossRefGoogle Scholar
  19. 19.
    Byl FM. Seventy-six cases of presumed sudden hearing loss occurring in 1973: prognosis and incidence. Laryngoscope. 1977;87(5 Pt 1):817–25.CrossRefGoogle Scholar
  20. 20.
    Yetiser S, Hıdır Y, Birket H, Satar B, Durmaz A. Traumatic ossicular dislocation: etiology and management. Am J Otolaryngol Head Neck Med Surg. 2008;29:31–6.Google Scholar
  21. 21.
    Dahiya R, Keller JD, Litofsky NS, Bankey PE, Lawrence J, Megerian CA. Temporal bone fractures: otic capsule sparing versus otic capsule violating clinical and radiographic considerations. J Trauma Inj Infect Crit Care. 1999;47(6):1079.CrossRefGoogle Scholar
  22. 22.
    Nageris B, et al. Temporal bone fractures. Am J Emerg Med. 1995;12:211–4.CrossRefGoogle Scholar
  23. 23.
    Virapongse C, Bhimani S, Sawar M. Radiology of the abnormal ear. In: Taveras JM, Ferrucci, editors. Radiology: diagnosis, imaging, intervention. Philadelphia: Lippincott; 1997.Google Scholar
  24. 24.
    Brodie HA, Thompson TC. Management of complications from 820 temporal bone fractures. Am J Otol. 1997;18:188.PubMedGoogle Scholar
  25. 25.
    Stahle J, Stahle C, Anerberg IK. Incidence of Ménière’s disease. Arch Otolaryngol. 1978;104:99–102.CrossRefGoogle Scholar
  26. 26.
    Nakee K, Komatuzaki K. Epidemiological study of Ménière’s disease. Pract Otol (Kyoto). 1984;69:1783–8.CrossRefGoogle Scholar
  27. 27.
    Tokumaau K, Tashiro N, Goto K, et al. Incidence and prevalence of Ménière’s disease in Aagamihara city, Kanagawa-ken. Pract Otol (Kyoto). 1983;1:1165–75.Google Scholar
  28. 28.
    Kotimaki J, Sorri M, Aantaa E, Nuutinen J. Prevalence of Ménière’s disease in Finland. Laryngoscope. 1999;109:748–53.CrossRefGoogle Scholar
  29. 29.
    Semaan MT, Megerian CA. Ménière’s disease: a challenging and relentless disorder. Otolaryngol Clin N Am. 2011;44(2):383–403, ix.CrossRefGoogle Scholar
  30. 30.
    Silverstein H, Smouha E, Jones R. Natural history vs. surgery for Meniere’s disease. Otolaryngol Head Neck Surg. 1989;100:6.CrossRefGoogle Scholar
  31. 31.
    Stepanidis K, Kessel M, Caye-Thomasen P, Stangerup SE. Socio-demographic distribution of vestibular schwannomas in Denmark. Acta Otolaryngol. 2014;134(6):551–6. Epub 2014 Mar 21.CrossRefGoogle Scholar
  32. 32.
    Arthurs BJ, Fairbanks RK, Demakas JJ, et al. A review of treatment modalities for vestibular schwannoma. Neurosurg Rev. 2011;34:265–77.CrossRefGoogle Scholar
  33. 33.
    Humphriss RL, Baguley DM, Axon PR, Moffat DA. Preoperative audiovestibular handicap in patients with vestibular schwannoma. Skull Base. 2006;16:193–9.CrossRefGoogle Scholar
  34. 34.
    Karatas M. Central vertigo and dizziness: epidemiology, differential diagnosis, and common causes. Neurologist. 2008;14:355–64.CrossRefGoogle Scholar
  35. 35.
    Hain T. Neurophysiology of vestibular rehabilitation. NeuroRehabilitation. 2011;29:127–41.PubMedGoogle Scholar
  36. 36.
    Balaban C, Hoffer M, Gottshall K. Top-down approach to vestibular compensation: translational lessons from vestibular rehabilitation. Brain Res. 2012;1482:101–11.CrossRefGoogle Scholar
  37. 37.
    McDonnell MN, Hillier SL. Vestibular rehabilitation for unilateral peripheral vestibular dysfunction. Cochrane Database Syst Rev. 2015;1:CD005397.PubMedGoogle Scholar
  38. 38.
    Guidelines and Policies Policy Statement: Vestibular Rehabilitation. American Academy of Otolaryngology – Head and neck surgery. 2007. Accessed 12 Jan 2018.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Otology, Neurotology, & Cranial Base Surgery, Department of Otolaryngology-Head and Neck SurgeryUniversity of KentuckyLexingtonUSA

Personalised recommendations