Advertisement

Local and Infinitesimal Rigidities

  • Abdo Y. Alfakih
Chapter

Abstract

This chapter focuses on the problems of local rigidity and infinitesimal rigidity of bar frameworks. These problems have a long and rich history going back at least as far as Cauchy [51]. The main tools in tackling these problems are the rigidity matrix R and the dual rigidity matrix \(\bar{R}\). While R is defined in terms of the underlying graph G and configuration p, \(\bar{R}\) is defined in terms of the complement graph \(\bar{G}\) and Gale matrix Z. Nonetheless, both matrices R and \(\bar{R}\) carry the same information. The chapter concludes with a discussion of generic local rigidity in dimension 2, where the local rigidity problem reduces to a purely combinatorial one depending only on graph G. The literature on the theory of local and infinitesimal rigidities is vast [59, 57, 66, 97, 194]. However, in this chapter, we confine ourselves to discussing only the basic results and the results pertaining to EDMs.

References

  1. 1.
    A.Y. Alfakih, Graph rigidity via Euclidean distance matrices. Linear Algebra Appl. 310, 149–165 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    A.Y. Alfakih, On rigidity and realizability of weighted graphs. Linear Algebra Appl. 325, 57–70 (2001)MathSciNetCrossRefGoogle Scholar
  3. 7.
    A.Y. Alfakih, On the dual rigidity matrix. Linear Algebra Appl. 428, 962–972 (2008)MathSciNetCrossRefGoogle Scholar
  4. 27.
    F. Alizadeh, J.A. Haeberly, M.L. Overton, Primal-dual interior-point methods for semidefinite programming: convergence rates, stability and numerical results. SIAM J. Optim. 8, 746–768 (1998)MathSciNetCrossRefGoogle Scholar
  5. 28.
    L. Asimow, B. Roth, The rigidity of graphs. Trans. Am. Math. Soc. 245, 279–289 (1978)MathSciNetCrossRefGoogle Scholar
  6. 29.
    L. Asimow, B. Roth, The rigidity of graphs II. J. Math. Anal. Appl. 68, 171–190 (1979)MathSciNetCrossRefGoogle Scholar
  7. 30.
    L. Auslander, R.E. MacKenzie, Introduction to Differentiable Manifolds (McGraw-Hill, New York, 1963)zbMATHGoogle Scholar
  8. 51.
    A.L. Cauchy, sur les polygons et les polyèdres, second mémoire. J. Ecole Polytech. 9, 87–98 (1813)Google Scholar
  9. 57.
    R. Connelly, Rigidity and energy. Invent. Math. 66, 11–33 (1982)MathSciNetCrossRefGoogle Scholar
  10. 59.
    R. Connelly, Rigidity, in Handbook of Convex Geometry, ed. by P.M. Gruber, J.M. Wills (North-Holand, Amsterdam, 1993), pp. 223–271CrossRefGoogle Scholar
  11. 66.
    G.M. Crippen, T.F. Havel, Distance Geometry and Molecular Conformation (Wiley, New York, 1988)zbMATHGoogle Scholar
  12. 83.
    H.N. Gabow, H.H. Westermann, Forests, frames and games, in Proceedings of the 20th Annual ACM Symposium on the Theory of Computing, 1988, pp. 407–421Google Scholar
  13. 86.
    H. Gluck, Almost all simply connected surfaces are rigid, in Geometric Topology. Lecture Notes in Mathematics, vol. 438 (Springer, New York, 1975), pp. 225–239Google Scholar
  14. 97.
    J. Graver, B. Servatius, H. Servatius, Combinatorial Rigidity (American Mathematical Society, Providence, 1993)CrossRefGoogle Scholar
  15. 107.
    L. Henneberg, Die graphische statik der starren systeme (B. G. Teubner, Leipzig, 1911)zbMATHGoogle Scholar
  16. 115.
    D.J. Jacobs, B. Hendrickson, An algorithm for the two-dimensional rigidity percolation: the pebble game. J. Comput. Phys. 137, 346–365 (1997)MathSciNetCrossRefGoogle Scholar
  17. 127.
    G. Laman, On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4, 331–340 (1970)MathSciNetCrossRefGoogle Scholar
  18. 128.
    M. Laurent, Cuts, matrix completion and graph rigidity. Math. Program. 79, 255–283 (1997)MathSciNetzbMATHGoogle Scholar
  19. 133.
    A. Lee, I. Streinu, Pebble game algorithms and sparse graphs. Discret. Math. 308, 1425–1437 (2008)MathSciNetCrossRefGoogle Scholar
  20. 138.
    L. Lovász, Geometric representations of graphs. Unpublished lecture notes, 2016Google Scholar
  21. 139.
    L. Lovász, Y. Yemini, On generic rigidity in the plane. SIAM J. Algebraic Discret. Methods 3, 91–98 (1982)MathSciNetCrossRefGoogle Scholar
  22. 145.
    J. Milnor, Singular Points of Complex Hypersurfaces. Annals of Mathematics Studies, vol. 61 (Princeton University Press, Princeton, 1968)Google Scholar
  23. 157.
    A. Recski, A network theory approach to the rigidity of skeletal structures 1: modelling and interconnection. Discret. Appl. Math. 7, 313–324 (1984)MathSciNetCrossRefGoogle Scholar
  24. 173.
    B. Servatius, H. Servatius, Generic and abstract rigidity, in Rigidity Theory and Applications, ed. by M.F. Thorpe, P.M. Duxbury (Kluwer, New York, 2002)zbMATHGoogle Scholar
  25. 191.
    A. Wallace, Algebraic approximation of curves. Can. J. Math. 10, 242–278 (1958)MathSciNetCrossRefGoogle Scholar
  26. 194.
    W. Whiteley, Matroids and rigid structures, in Matroid Applications, Encyclopedia of Mathematics and Its Applications, ed. by N. White, vol. 40 (Cambridge University Press, Cambridge, 1992), pp. 1–53Google Scholar
  27. 195.
    W. Whiteley, B. Roth, Tensegrity frameworks. Trans. Am. Math. Soc. 265, 419–446 (1981)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Abdo Y. Alfakih
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of WindsorWindsorCanada

Personalised recommendations