EDM Completions and Bar Frameworks

  • Abdo Y. Alfakih


This chapter has three parts. Part one addresses the problem of EDM completions. Part two is an introduction to the theory of bar-and-joint frameworks. Such frameworks, which are interesting in their own right, are particularly useful in the study of various uniqueness notions of EDM completions. In the third part, we discuss stress matrices, which play a pivotal role in the theory of bar-and-joint frameworks. The chapter concludes with the classic Maxwell–Cremona theorem. We begin first with EDM completions.


  1. 1.
    A.Y. Alfakih, Graph rigidity via Euclidean distance matrices. Linear Algebra Appl. 310, 149–165 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    A.Y. Alfakih, On rigidity and realizability of weighted graphs. Linear Algebra Appl. 325, 57–70 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    A.Y. Alfakih, On the uniqueness of Euclidean distance matrix completions: the case of points in general position. Linear Algebra Appl. 397, 265–277 (2005)MathSciNetCrossRefGoogle Scholar
  4. 9.
    A.Y. Alfakih, On the universal rigidity of generic bar frameworks. Contrib. Discret. Math. 5, 7–17 (2010)MathSciNetzbMATHGoogle Scholar
  5. 10.
    A.Y. Alfakih, On bar frameworks, stress matrices and semidefinite programming. Math. Program. Ser. B 129, 113–128 (2011)MathSciNetCrossRefGoogle Scholar
  6. 16.
    A.Y. Alfakih, Universal rigidity of bar frameworks via the geometry of spectrahedra. J. Glob. Optim. 67, 909–924 (2017)MathSciNetCrossRefGoogle Scholar
  7. 21.
    A.Y. Alfakih, A. Khandani, H. Wolkowicz, Solving Euclidean distance matrix completion problems via semidefinite programming. Comput. Optim. Appl. 12, 13–30 (1999)MathSciNetCrossRefGoogle Scholar
  8. 23.
    S. AlHomidan, Hybrid Methods for Optimization Problems with Positive Semidefinite Matrix Constraints. PhD thesis, University of Dundee, 1993Google Scholar
  9. 24.
    S. AlHomidan, R. Fletcher, Hybrid methods for finding the nearest Euclidean distance matrix, in Recent Advances in Nonsmooth Optimization (World Scientific Publishing, River Edge, 1995), pp. 1–17CrossRefGoogle Scholar
  10. 25.
    S. AlHomidan, H. Wolkowicz, Approximate and exact completion problems for Euclidean distance matrices using semidefinite programming. Linear Algebra Appl. 406, 109–141 (2005)MathSciNetCrossRefGoogle Scholar
  11. 31.
    M. Bakonyi, C.R. Johnson, The Euclidean distance matrix completion problem. SIAM J. Matrix Anal. Appl. 16, 646–654 (1995)MathSciNetCrossRefGoogle Scholar
  12. 43.
    P. Biswas, Y. Ye, Semidefinite programming for ad hoc wireless sensor network localization, in Proceedings 3rd IPSN, 2004, pp. 46–54Google Scholar
  13. 65.
    H. Crapo, W. Whiteley, Plane self stresses and projected polyhedra I: the basic pattern. Struct. Topol. 20, 55–77 (1993)zbMATHGoogle Scholar
  14. 66.
    G.M. Crippen, T.F. Havel, Distance Geometry and Molecular Conformation (Wiley, New York, 1988)zbMATHGoogle Scholar
  15. 71.
    Y. Ding, N. Krislock, J. Qian, H. Wolkowicz, Sensor network localization, Euclidean distance matrix completions, and graph realization. Optim. Eng. 11, 45–66 (2010)MathSciNetCrossRefGoogle Scholar
  16. 77.
    H. Fang, D.P. O’leary, Euclidean distance matrix completion problems. Optim. Methods Softw. 27, 695–717 (2012)MathSciNetCrossRefGoogle Scholar
  17. 85.
    M.R. Garey, D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness (W. H. Freeman and Company, New York, 1979)zbMATHGoogle Scholar
  18. 98.
    R. Grone, C.R. Johnson, E.M. Sá, H. Wolkowicz, Positive definite completions of partial Hermitian matrices. Linear Algebra Appl. 58, 109–124 (1984)MathSciNetCrossRefGoogle Scholar
  19. 100.
    T.F. Havel, I.D. Kuntz, G.M. Crippen, Theory and practice of distance geometry. Bull. Math. Biol. 45, 665–720 (1983)MathSciNetCrossRefGoogle Scholar
  20. 106.
    B. Hendrickson, The molecule problem: exploiting the structure in global optimization. SIAM J. Optim. 5, 835–857 (1995)MathSciNetCrossRefGoogle Scholar
  21. 111.
    J.E. Hopcroft, P.J. Kahn, A paradigm for robust geometric algorithms. Algorithmica 7, 339–380 (1992)MathSciNetCrossRefGoogle Scholar
  22. 122.
    N. Krislock, H. Wolkowicz, Explicit sensor network localization using semidefinite representations and facial reductions. SIAM J. Optim. 20, 2679–2708 (2010)MathSciNetCrossRefGoogle Scholar
  23. 128.
    M. Laurent, Cuts, matrix completion and graph rigidity. Math. Program. 79, 255–283 (1997)MathSciNetzbMATHGoogle Scholar
  24. 129.
    M. Laurent, A connection between positive semidefinite and Euclidean distance matrix completion problems. Linear Algebra Appl. 273, 9–22 (1998)MathSciNetCrossRefGoogle Scholar
  25. 130.
    M. Laurent, Polynomial instances of the positive semidefinite and Euclidean distance matrix completion problems. SIAM J. Matrix Anal. Appl. 22, 874–894 (2000)MathSciNetCrossRefGoogle Scholar
  26. 134.
    C.-K. Li, T. Milligan, Uniqueness of the solutions of some completion problems. Technical report, Dept. of Mathematics, The College of William and Mary, 2003Google Scholar
  27. 135.
    L. Liberti, C. Lavor, Euclidean Distance Geometry, An Introduction (Springer, Cham, 2017)CrossRefGoogle Scholar
  28. 141.
    J.C. Maxwell, On reciprocal figures and diagrams of forces. Philos. Mag. 4, 250–261 (1864)CrossRefGoogle Scholar
  29. 142.
    J.C. Maxwell, On reciprocal figures, frameworks and diagrams of forces. Trans. R. Soc. Edinb. 26, 1–40 (1870)CrossRefGoogle Scholar
  30. 147.
    J.J. Moré, Z. Wu, Global for distance geometry problems. SIAM J. Optim. 7, 814–836 (1997)MathSciNetCrossRefGoogle Scholar
  31. 148.
    J.J. Moré, Z. Wu, Distance geometry optimization for protein structures. J. Glob. Optim. 15, 219–234 (1999)MathSciNetCrossRefGoogle Scholar
  32. 159.
    J. Richter-Gebert, Realization Spaces of Polytopes. Lecture Notes in Mathematics, vol. 1643 (Springer, Berlin, 1996)CrossRefGoogle Scholar
  33. 164.
    J.B. Saxe, Embeddability of weighted graphs in k-space is strongly NP-hard. Proceedings of the 17th Allerton Conference in Communications, Control, and Computing, 1979, pp. 480–489Google Scholar
  34. 171.
    I.J. Schoenberg, Linkages and distance geometry. Nedrel. Akad. Wetensch. proc. Ser A. 72, Indag. Math. 31, 43–52 (1969)MathSciNetCrossRefGoogle Scholar
  35. 176.
    M. Sitharam, H. Gao, Characterizing graphs with convex and connected Cayley configuration spaces. Discret. Comput. Geom. 43, 594–625 (2010)MathSciNetCrossRefGoogle Scholar
  36. 178.
    A.M.-C. So, Y. Ye, Semidefinite programming approach to tensegrity theory and realizability of graphs, in Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), 2006, pp. 766–775Google Scholar
  37. 179.
    A.M.-C. So, Y. Ye, Theory of semidefinite programming for sensor network localization. Math. Prog. Ser. B 109, 367–384 (2007)MathSciNetCrossRefGoogle Scholar
  38. 190.
    M.W. Trosset, Distance matrix completion by numerical optimization. Comput. Optim. Appl. 17, 11–22 (2000)MathSciNetCrossRefGoogle Scholar
  39. 192.
    H.S. White, Cremona’s work. Bull. Am. Math. Soc. 24, 238–243 (1918)CrossRefGoogle Scholar
  40. 193.
    W. Whiteley, Motions and stresses of projected polyhedra. Struct. Topol. 7, 13–38 (1982)MathSciNetzbMATHGoogle Scholar
  41. 198.
    H. Wolkowicz, R. Saigal, L. Vandenberghe (eds.), Handbook of Semidefinite Programming. Theory, Algorithms and Applications (Kluwer Academic Publishers, Boston, 2000)zbMATHGoogle Scholar
  42. 199.
    Y. Yemini, Some theoretical aspects of location-location problems, in Proceedings of the IEEE Symposium on Foundations of Computer Science, 1979, pp. 1–8Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Abdo Y. Alfakih
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of WindsorWindsorCanada

Personalised recommendations