The Eigenvalues of EDMs

  • Abdo Y. Alfakih


The focus of this chapter is on the eigenvalues of EDMs. In the first part, we present a characterization of the column space of an EDM D. This characterization is then used to express the eigenvalues of D in terms of the eigenvalues of its Gram matrix \(B =\mathcal{ T}(D) = -JDJ/2\). In case of regular and nonspherical centrally symmetric EDMs, the same result can also be obtained by using the notion of equitable partition. In the second part, we discuss some other topics related to eigenvalues such as: a method for constructing nonisomorphic cospectral EDMs; the connection between EDMs, graphs, and combinatorial designs; EDMs with exactly two or three distinct eigenvalues and the EDM inverse eigenvalue problem.


  1. 4.
    A.Y. Alfakih, On the nullspace, the rangespace and the characteristic polynomial of Euclidean distance matrices. Linear Algebra Appl. 416, 348–354 (2006)MathSciNetCrossRefGoogle Scholar
  2. 8.
    A.Y. Alfakih, On the eigenvalues of Euclidean distance matrices. Comput. Appl. Math. 27, 237–250 (2008)MathSciNetCrossRefGoogle Scholar
  3. 55.
    M.T. Chu, Inverse eigenvalue problems. SIAM Rev. 40, 1–39 (1998)MathSciNetCrossRefGoogle Scholar
  4. 87.
    C.D. Godsil, Compact graphs and equitable partitions. Linear Algebra Appl. 255, 259–266 (1997)MathSciNetCrossRefGoogle Scholar
  5. 88.
    C.D. Godsil, B.D. McKay, Feasibility conditions for the existence of walk-regular graphs. Linear Algebra Appl. 30, 51–61 (1980)MathSciNetCrossRefGoogle Scholar
  6. 101.
    T.L. Hayden, P. Tarazaga, Distance matrices and regular figures. Linear Algebra Appl. 195, 9–16 (1993)MathSciNetCrossRefGoogle Scholar
  7. 104.
    T.L. Hayden, J. Lee, J. Wells, P. Tarazaga, Block matrices and multispherical structure of distance matrices. Linear Algebra Appl. 247, 203–216 (1996)MathSciNetCrossRefGoogle Scholar
  8. 105.
    T.L. Hayden, R. Reams, J. Wells, Methods for constructing distance matrices and the inverse eigenvalue problem. Linear Algebra Appl. 295, 97–112 (1999)MathSciNetCrossRefGoogle Scholar
  9. 117.
    G. Jaklič, J. Modic, A note on methods for constructing distance matrices and the inverse eigenvalue problem. Linear Algebra Appl. 437, 2781–2792 (2012)MathSciNetCrossRefGoogle Scholar
  10. 120.
    H. Kharaghani, B. Tayfeh-Rezaie, A Hadamard matrix of order 428. J. Combin. Des. 13, 435–440 (2005)MathSciNetCrossRefGoogle Scholar
  11. 150.
    A. Mowshowitz, The adjacency matrix and the group of a graph, in New Directions in the Theory of Graphs, ed. by F. Harary (Academic Press, New York, 1973), pp. 129–148Google Scholar
  12. 151.
    A.M. Nazari, F. Mahdinasab, Inverse eigenvalue problem of distance matrix via orthogonal matrix. Linear Algebra Appl. 450, 202–216 (2014)MathSciNetCrossRefGoogle Scholar
  13. 152.
    A. Neumaier, Distances, graphs and designs. Eur. J. Combin. 1, 163–174 (1980)MathSciNetCrossRefGoogle Scholar
  14. 153.
    A. Neumaier, Distance matrices, dimension and conference graphs. Nederl. Akad. Wetensch. Indag. Math. 43, 385–391 (1981)MathSciNetCrossRefGoogle Scholar
  15. 163.
    H. Sachs, Über teiler, faktoren und charakteristische polynome von graphen. Teil I. Wiss. Z. TH Ilmenau 12, 7–12 (1966)zbMATHGoogle Scholar
  16. 172.
    A.J. Schwenk, Computing the characteristic polynomial of a graph, in Graphs and Combinatorics. Lecture Notes in Mathematics, Vol. 406 (Springer, Berlin, 1974), pp. 153–162Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Abdo Y. Alfakih
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of WindsorWindsorCanada

Personalised recommendations