Advertisement

The Geometry of EDMs

  • Abdo Y. Alfakih
Chapter

Abstract

The geometric properties of EDMs are inherited from those of PSD matrices. Let \(\mathcal{D}^{n}\) denote the set of EDMs of order n. This chapter focuses on the geometry of \(\mathcal{D}^{n}\). In particular, we study the facial structure of \(\mathcal{D}^{n}\) and its polar, and we highlight the similarities between \(\mathcal{D}^{n}\) and the positive semidefinite cone \(\mathcal{S}_{+}^{n}\).

References

  1. 5.
    A.Y. Alfakih, A remark on the faces of the cone of Euclidean distance matrices. Linear Algebra Appl. 414, 266–270 (2006)MathSciNetCrossRefGoogle Scholar
  2. 70.
    M. Deza, M. Laurent, Geometry of Cuts and Metrics, Algorithms and Combinatorics, vol. 15 (Springer, Berlin, 1997)CrossRefGoogle Scholar
  3. 75.
    D. Drusvyatskiy, G. Pataki, H. Wolkowicz, Coordinate shadows of semidefinite and Euclidean distance matrices. SIAM J. Optim. 25, 1160–1178 (2015)MathSciNetCrossRefGoogle Scholar
  4. 90.
    S.J. Gortler, D.P. Thurston, Characterizing the universal rigidity of generic frameworks. Discret. Comput. Geom. 51, 1017–1036 (2014)MathSciNetCrossRefGoogle Scholar
  5. 103.
    T.L. Hayden, J. Wells, W.-M. Liu, P. Tarazaga, The cone of distance matrices. Linear Algebra Appl. 144, 153–169 (1991)MathSciNetCrossRefGoogle Scholar
  6. 126.
    H. Kurata, P. Tarazaga, The cell matrix closest to a given Euclidean distance matrices. Linear Algebra Appl. 485, 194–207 (2015)MathSciNetCrossRefGoogle Scholar
  7. 131.
    M. Laurent, S. Poljak, On a positive semidefinite relaxation of the cut polytope. Linear Algebra Appl. 223/224, 439–461 (1995)MathSciNetCrossRefGoogle Scholar
  8. 160.
    R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970)CrossRefGoogle Scholar
  9. 184.
    P. Tarazaga, Faces of the cone of Euclidean distance matrices: characterizations, structure and induced geometry. Linear Algebra Appl. 408, 1–13 (2005)MathSciNetCrossRefGoogle Scholar
  10. 186.
    P. Tarazaga, T.L. Hayden, J. Wells, Circum-Euclidean distance matrices and faces. Linear Algebra Appl. 232, 77–96 (1996)MathSciNetCrossRefGoogle Scholar
  11. 187.
    P. Tarazaga, H. Kurata, On cell matrices: a class of Euclidean distance matrices. Appl. Math. Comput. 238, 468–474 (2014)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Abdo Y. Alfakih
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of WindsorWindsorCanada

Personalised recommendations