Processing of Sustainable Polymer Nanocomposites

  • Orebotse Joseph Botlhoko
  • Suprakas Sinha RayEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 278)


This chapter provides a brief overview on the processing methods and structure-property relationships of polylactide, polyhydroxybutyrate, and starch nanocomposites as well as the challenges faced in their development, in order to further the state-of-the-art of green nanochemistry. The concept of biodegradable polymer nanocomposites and the role of nanofillers are discussed in detail. Further, the performances and potential industrial applications of these sustainable polymer nanocomposites are also discussed in brief.


Bionanocomposites Processing-strategy Structure-property relationships 



The authors are grateful for the financial support from the Department of Science and Technology and the Council for Scientific and Industrial Research (DST-CSIR NCNSM).


  1. 1.
    Zaman I, Manshoor B, Khalid A, Araby S (2014) From clay to graphene for polymer nanocomposites—a survey. J Polym Res 21:429CrossRefGoogle Scholar
  2. 2.
    Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Part C Polym Rev 44:231–274CrossRefGoogle Scholar
  3. 3.
    Gao Y, Picot OT, Bilotti E, Peijs T (2017) Influence of filler size on the properties of poly(lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites. Eur Polym J 86:117–131CrossRefGoogle Scholar
  4. 4.
    Pachekoski WM, Agnelli JAM, Belem LP (2009) Thermal, mechanical and morphological properties of poly(hydroxybutyrate) and polypropylene blends after processing. Mater Res 12:159–164CrossRefGoogle Scholar
  5. 5.
    Inan K, Sal FA, Rahman A, Putman RJ, Agblevor FA, Miller CD (2016) Microbubble assisted polyhydroxybutyrate production in Escherichia coli. BMC Res Notes 9:338CrossRefGoogle Scholar
  6. 6.
    Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40:607–619CrossRefGoogle Scholar
  7. 7.
    Wang B, Sharma-Shivappa RR, Olson JW, Khan SA (2012) Upstream process optimization of polyhydroxybutyrate (PHB) by Alcaligenes latus using two-stage batch and fed-batch fermentation strategies. Bioprocess Biosyst Eng 35:1591–1602CrossRefGoogle Scholar
  8. 8.
    Arrieta MP, Samper MD, Aldas M, López J (2017) On the use of PLA-PHB blends for sustainable food packaging applications. Materials 10:1008ADSCrossRefGoogle Scholar
  9. 9.
    Sreedevi S, Unni KN, Sajith S, Priji P, Josh MS, Benjamin S (2014) Bioplastics: advances in polyhydroxybutyrate research. Advances in polymer science. Springer, Berlin, pp 1–30Google Scholar
  10. 10.
    Luckachan GE, Pillai CKS (2011) Biodegradable polymers—a review on recent trends and emerging perspectives. J Polym Environ 19:637–676CrossRefGoogle Scholar
  11. 11.
    Mudliar SN, Vaidya AN, Kumar MS, Dahikar S, Chakrabarti T (2008) Techno-economic evaluation of PHB production from activated sludge. Clean Techn Env Policy 10:255–262CrossRefGoogle Scholar
  12. 12.
    Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192CrossRefGoogle Scholar
  13. 13.
    Nanthananon P, Seadan M, Pivsa-Art S, Suttiruengwong S (2015) Enhanced crystallization of poly (lactic acid) through reactive aliphatic bisamide. IOP Conf Ser Mater Sci Eng 87:012067CrossRefGoogle Scholar
  14. 14.
    Rouf TB, Kokini JL (2016) Biodegradable biopolymer–graphene nanocomposites. J Mater Sci 51:9915–9945ADSCrossRefGoogle Scholar
  15. 15.
    Najafi N, Heuzey MC, Carreau PJ (2012) Polylactide (PLA)-clay nanocomposites prepared by melt compounding in the presence of a chain extender. Compos Sci Technol 72:608–615CrossRefGoogle Scholar
  16. 16.
    Cui Y, Kundalwal SI, Kumar S (2016) Gas barrier performance of graphene/polymer nanocomposites. Carbon 98:313–333CrossRefGoogle Scholar
  17. 17.
    Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670CrossRefGoogle Scholar
  18. 18.
    Ojijo V, Ray SS (2013) Progress in polymer science processing strategies in bionanocomposites. Prog Polym Sci 38:1543–1589CrossRefGoogle Scholar
  19. 19.
    Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-manchado MA, Kenny JM (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38:1720–1747CrossRefGoogle Scholar
  20. 20.
    Picard E, Espuche E, Fulchiron R (2011) Effect of an organo-modi fi ed montmorillonite on PLA crystallization and gas barrier properties. Appl Clay Sci 53:58–65.CrossRefGoogle Scholar
  21. 21.
    Shameli K, Zakaria Z, Hara H, Ahmad MB, Mohamad SE, Nordin MFM, Iwamoto K (2015) Poly(lactic acid)/organoclay blend nanocomposites: structural, mechanical and microstructural properties. J Nanomater Biostr 10:323–329Google Scholar
  22. 22.
    Moad G, Dagley IJ, Habsuda J, Garvey CJ, Li G, Nichols L, Simon GP, Nobile MR (2015) Aqueous hydrogen peroxide-induced degradation of polyole fi ns: a greener process for controlled-rheology polypropylene. Polym Degrad Stab 117:97–108CrossRefGoogle Scholar
  23. 23.
    D’Urso L, Acocella MR, Guerra G, Iozzino V, Santis FD, Pantani R (2018) PLA melt stabilization by high-surface-area graphite and carbon black. Polymers 10:139CrossRefGoogle Scholar
  24. 24.
    Sridhar V, Lee I, Chun HH, Park H (2013) Graphene reinforced biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) nano-composites. Express Polym Lett 7:320–328CrossRefGoogle Scholar
  25. 25.
    Maiti P, Batt CA, Giannelis EP (2007) New biodegradable polyhydroxybutyrate/layered silicate nanocomposites. Biomacromol 8:3393–3400CrossRefGoogle Scholar
  26. 26.
    Lim ST, Hyun YH, Lee CH, Choi HJ (2003) Preparation and characterization of microbial biodegradable poly (3-hydroxybutyrate)/organoclay nanocomposite. J Mater Sci Lett 22:299–302CrossRefGoogle Scholar
  27. 27.
    Botlhoko OJ, Ramontja J, Ray SS (2017) Thermal, mechanical, and rheological properties of graphite- and graphene oxide-filled biodegradable polylactide/poly(ε-caprolactone) blend composites. J Appl Polym Sci 134:45373CrossRefGoogle Scholar
  28. 28.
    Xie F, Halley PJ, Avérous L (2012) Rheology to understand and optimize processibility, structures and properties of starch polymeric materials. Prog Polym Sci 37:595–623CrossRefGoogle Scholar
  29. 29.
    Lu DR, Xiao CM, Xu SR (2009) Starch-based completely biodegradable polymer materials. Express Polym Lett 3:366–375CrossRefGoogle Scholar
  30. 30.
    Bari SS, Chatterjee A, Mishra S (2016) Biodegradable polymer nanocomposites: an overview. Polym Rev 56:287–328CrossRefGoogle Scholar
  31. 31.
    Müller CMO, Laurindoa JB, Yamashita F (2012) Composites of thermoplastic starch and nanoclays produced by extrusion and thermopressing. Carbohydr Polym 89:504–510CrossRefGoogle Scholar
  32. 32.
    Chung Y, Ansari S, Estevez L, Hayrapetyan S, Giannelis EP, Lai H (2010) Preparation and properties of biodegradable starch–clay nanocomposites. Carbohydr Polym 79:391–396CrossRefGoogle Scholar
  33. 33.
    Chieng BW, Ibrahim NA, Zin W, Yunus W, Hussein MZ, Then YY, Loo YY (2014) Effects of graphene nanoplatelets and reduced graphene oxide on poly(lactic acid) and plasticized poly(lactic acid): a comparative study. Polymers 6:2232–2246CrossRefGoogle Scholar
  34. 34.
    Paul DR, Robeson LM (2018) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204CrossRefGoogle Scholar
  35. 35.
    Iturrondobeitia M, Ibarretxe J, Okariz A, Jimbert P, Fernandez-martinez R, Guraya T (2018) Semi-automated quantification of the microstructure of PLA/clay nanocomposites to improve the prediction of the elastic modulus. Polym Test 66:280–291CrossRefGoogle Scholar
  36. 36.
    Botana A, Mollo M, Eisenberg P, Sanchez RMT (2010) Effect of modified montmorillonite on biodegradable PHB nanocomposites. Appl Clay Sci 47:263–270CrossRefGoogle Scholar
  37. 37.
    Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliv Rev 107:367–392CrossRefGoogle Scholar
  38. 38.
    Raquez J, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites Jean-Marie. Prog Polym Sci 38:1504–1542CrossRefGoogle Scholar
  39. 39.
    Gironi F, Frattari S, Piemonte V (2016) PLA chemical recycling process optimization: PLA solubilization in organic solvents. J Polym Environ 24:328–333CrossRefGoogle Scholar
  40. 40.
    Bordes P, Pollet E, Bourbigot S, Averous L (2008) Structure and properties of PHA/clay nano-biocomposites prepared by melt intercalation. Macromol Chem Phys 209:1473–1484CrossRefGoogle Scholar
  41. 41.
    Akin O, Tihminlioglu F (2018) Effects of organo-modified clay addition and temperature on the water vapor barrier properties of polyhydroxy butyrate homo and copolymer nanocomposite films for packaging applications. J Polym Environ 26:1121–1132CrossRefGoogle Scholar
  42. 42.
    Xie F, Luckman P, Milne J, McDonald L, Young C, Tu CY, Pasquale TD, Faveere R, Halley PJ (2014) Thermoplastic starch: current development and future trends. J Renew Mater 2:95–106CrossRefGoogle Scholar
  43. 43.
    Corre DL, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromol 11:1139–1153CrossRefGoogle Scholar
  44. 44.
    Ma T, Chang PR, Zheng P, Ma X (2013) The composites based on plasticized starch and graphene oxide/reduced graphene oxide. Carbohydr Polym 94:63–70CrossRefGoogle Scholar
  45. 45.
    Khosravi-darani K, Bucci DZ (2015) Application of poly(hydroxyalkanoate) in food packaging: improvements by nanotechnology. Chem Biochem Eng 29:275–285CrossRefGoogle Scholar
  46. 46.
    Follain N, Chappey C, Dargent E, Chivrac F, Crétois R, Marais S (2014) Structure and barrier properties of biodegradable polyhydroxyalkanoate films. J Phys Chem C 118:6165–6177CrossRefGoogle Scholar
  47. 47.
    Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467–474CrossRefGoogle Scholar
  48. 48.
    Paul MA, Alexandre M, Degée P, Calberg C, Jerome R, Dubois P (2003) Exfoliated polylactide/clay nanocomposites by in situ coordination–insertion polymerization. Macromol Rapid Commun 24:561–566CrossRefGoogle Scholar
  49. 49.
    Cele HM, Ojijo V, Chen H, Kumar S, Land K, Joubert T, De Villiers MFR, Ray SS (2014) Effect of nanoclay on optical properties of PLA/clay composite films. Polym Test 36:24–31CrossRefGoogle Scholar
  50. 50.
    Pinto AM, Gonçalves C, Gonçalves IC, Magalhães FD (2016) Effect of biodegradation on thermo-mechanical properties and biocompatibility of poly (lactic acid)/graphene nanoplatelets composites. Eur Polym J 85:431–444CrossRefGoogle Scholar
  51. 51.
    Botta L, Scaffaro R, Sutera F, Mistretta MC (2018) Reprocessing of PLA/graphene nanoplatelets nanocomposites. Polymers 10:18CrossRefGoogle Scholar
  52. 52.
    Chen Y, Yao X, Zhou X, Pan Z, Gu Q (2011) Poly (lactic acid)/graphene nanocomposites prepared via solution blending using chloroform as a mutual solvent. J Nanosci Nanotechnol 11:7813–7819CrossRefGoogle Scholar
  53. 53.
    Puglia D, Fortunati E, Amico DAD, Manfredi LB, Cyras VP, Kenny JM (2014) Influence of organically modified clays on the properties and disintegrability in compost of solution cast poly (3-hydroxybutyrate) films. Polym Degrad Stab 99:127–135CrossRefGoogle Scholar
  54. 54.
    Arza CR, Jannasch P, Maurer FHJ (2014) Network formation of graphene oxide in poly(3-hydroxybutyrate) nanocomposites. Eur Polym J 59:262–269CrossRefGoogle Scholar
  55. 55.
    Bian J, Lan H, Wang G, Zhou Q, Wang ZJ, Zhou X, Lu Y, Zhao XW (2016) Morphological, mechanical and thermal properties of chemically bonded graphene oxide nanocomposites with biodegradable poly(3-hydroxybutyrate) by solution intercalation. Polym Polym Compos 24:133–141CrossRefGoogle Scholar
  56. 56.
    Dean K, Yu L, Wu DY (2007) Preparation and characterization of melt-extruded thermoplastic starch/clay nanocomposites. Compos Sci Technol 67:413–421CrossRefGoogle Scholar
  57. 57.
    Li R, Liu C, Ma J (2011) Studies on the properties of graphene oxide-reinforced starch biocomposites. Carbohydr Polym 84:631–637CrossRefGoogle Scholar
  58. 58.
    Liu H, Song W, Chen F, Guo L, Zhang J (2011) Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends. Macromolecules 44:1513–1522ADSCrossRefGoogle Scholar
  59. 59.
    Arrieta MP, Lopez J, Ferrandiz S, Peltzer MA (2013) Characterization of PLA-limonene blends for food packaging applications. Polym Test 32:760–768CrossRefGoogle Scholar
  60. 60.
    Mofokeng TG, Ray SS, Ojijo V (2018) Structure—property relationship in PP/LDPE blend composites: the role of nanoclay localization. J Appl Polym Sci 135:46193CrossRefGoogle Scholar
  61. 61.
    Salehiyan R, Ray SS, Bandyopadhyay J, Ojijo V (2017) The distribution of nanoclay particles at the interface and their influence on the microstructure development and rheological properties of reactively processed biodegradable blend nanocomposites. Polymers 9:350CrossRefGoogle Scholar
  62. 62.
    Botlhoko OJ, Ramontja J, Ray SS (2018) Morphological development and enhancement of thermal, mechanical, and electronic properties of thermally exfoliated graphene oxide- filled biodegradable polylactide/poly(ε-caprolactone) blend composites. Polymer 139:188–200CrossRefGoogle Scholar
  63. 63.
    Botlhoko OJ, Ramontja J, Ray SS (2017) Thermally shocked graphene oxide-containing biocomposite for thermal management applications. RSC Adv 7:33751–33756CrossRefGoogle Scholar
  64. 64.
    Phiri J, Gane P, Maloney TC (2017) General overview of graphene: production, properties and application in polymer composites. Mater Sci Eng B 215:9–28CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.DST-CSIR National Centre for Nanostructured MaterialsCouncil for Scientific and Industrial ResearchPretoriaSouth Africa
  2. 2.Department of Applied ChemistryUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations