Rubber Nanocomposites: Processing, Structure–Property Relationships, Applications, Challenges, and Future Trends

  • Reza Salehiyan
  • Suprakas Sinha RayEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 278)


This chapter discusses the roles of different nanoparticle types such as clays, CNTs, and graphene-based materials in the rubber manufacturing processes. It is shown that nanoparticles not only reinforce rubber matrices, but they can also accelerate cross-linking reactions during vulcanization/curing and save energy. Further, the degree of reinforcement depends strongly on the dispersion of the nanoparticles within the nanocomposites. Accordingly, different rubber fabrication technologies can give rise to different dispersion states, and, hence, different final properties. Often, nanocomposites prepared via solution mixing or in situ polymerization exhibit better dispersion than those prepared via the melt-intercalation method. However, the environmental and cost issues associated with the solvents used in these methods limit their widespread and large-scale use. Finally, this chapter shows that the morphology of the nanoparticles (i.e., segregated structures) within the matrix can enhance properties such as electrical conductivity and permeability more effectively than dispersion itself (i.e., non-segregated structures).



The authors would like to thank the Department of Science and Technology and the Council for Scientific and Industrial Research, South Africa, for financial support.


  1. 1.
    Morton M (2013) Rubber technology. Springer Science & Business MediaGoogle Scholar
  2. 2.
    Thomas S, Stephen R (2010) Rubber nanocomposites: preparation, properties and applications. WileyGoogle Scholar
  3. 3.
    Selvin Thomas P, Abdullateef AA, Al-Harthi MA, Atieh MA, De SK, Rahaman M et al (2012) Electrical properties of natural rubber nanocomposites: effect of 1-octadecanol functionalization of carbon nanotubes. J Mater Sci 47:3344–3349ADSCrossRefGoogle Scholar
  4. 4.
    Bhattacharya M, Bhowmick AK (2010) Synergy in carbon black-filled natural rubber nanocomposites. Part i: mechanical, dynamic mechanical properties, and morphology. J Mater Sci 45:6126–6138ADSCrossRefGoogle Scholar
  5. 5.
    Bhattacharya M, Maiti M, Bhowmick AK (2008) Influence of different nanofillers and their dispersion methods on the properties of natural rubber nanocomposites. Rubber Chem Technol 81:782–808CrossRefGoogle Scholar
  6. 6.
    Galimberti M (2011) Rubber-clay nanocomposites: science, technology, and applications. WileyGoogle Scholar
  7. 7.
    Thomas S, Zaikov G (2009) Recent advances in polymer nanocomposites. CRC PressGoogle Scholar
  8. 8.
    Kim J-t Oh, T-s Lee D-h (2003) Morphology and rheological properties of nanocomposites based on nitrile rubber and organophilic layered silicates. Polym Int 52:1203–1208CrossRefGoogle Scholar
  9. 9.
    Wu J, Huang G, Li H, Wu S, Liu Y, Zheng J (2013) Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content. Polymer 54:1930–1937CrossRefGoogle Scholar
  10. 10.
    Jiang M-J, Dang Z-M, Yao S-H, Bai J (2008) Effects of surface modification of carbon nanotubes on the microstructure and electrical properties of carbon nanotubes/rubber nanocomposites. Chem Phys Lett 457:352–356ADSCrossRefGoogle Scholar
  11. 11.
    Gu Z, Song G, Liu W, Wang B, Li J (2009) Preparation and properties of organo-montmorillonite/cis-1,4-polybutadiene rubber nanocomposites by solution intercalation. Appl Clay Sci 45:50–53CrossRefGoogle Scholar
  12. 12.
    Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450CrossRefGoogle Scholar
  13. 13.
    Mahmoud WE (2011) Morphology and physical properties of poly(ethylene oxide) loaded graphene nanocomposites prepared by two different techniques. Euro Polym J 47:1534–1540CrossRefGoogle Scholar
  14. 14.
    Kalaitzidou K, Fukushima H, Drzal LT (2007) A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol 67:2045–2051CrossRefGoogle Scholar
  15. 15.
    Liao M, Zhang W, Shan W, Zhang Y (2006) Structure and properties of polybutadiene/montmorillonite nanocomposites prepared by in situ polymerization. J Appl Polym Sci 99:3615–3621CrossRefGoogle Scholar
  16. 16.
    Koning C, Hermant MC, Grossiord N (2012) Polymer carbon nanotube composites: the polymer latex concept. CRC PressGoogle Scholar
  17. 17.
    Peng Z, Feng C, Luo Y, Li Y, Kong LX (2010) Self-assembled natural rubber/multi-walled carbon nanotube composites using latex compounding techniques. Carbon 48:4497–4503CrossRefGoogle Scholar
  18. 18.
    Potts JR, Shankar O, Murali S, Du L, Ruoff RS (2013) Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber nanocomposites. Compos Sci Technol 74:166–172CrossRefGoogle Scholar
  19. 19.
    Mohamed A, Anas AK, Abu Bakar S, Aziz AA, Sagisaka M, Brown P et al (2014) Preparation of multiwall carbon nanotubes (MWCNTs) stabilised by highly branched hydrocarbon surfactants and dispersed in natural rubber latex nanocomposites. Colloid Polym Sci 292:3013–3023CrossRefGoogle Scholar
  20. 20.
    Mohamed A, Anas AK, Bakar SA, Ardyani T, Zin WMW, Ibrahim S et al (2015) Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites by surfactants bearing phenyl groups. J Colloid Interface Sci 455:179–187ADSCrossRefGoogle Scholar
  21. 21.
    Furuya M, Shimono N, Yamazaki K, Domura R, Okamoto M (2017) Evaluation on cytotoxicity of natural rubber latex nanoparticles and application in bone tissue engineering. E-J Soft Mater 12:1–10CrossRefGoogle Scholar
  22. 22.
    George N, Bipinbal PK, Bhadran B, Mathiazhagan A, Joseph R (2017) Segregated network formation of multiwalled carbon nanotubes in natural rubber through surfactant assisted latex compounding: a novel technique for multifunctional properties. Polymer 112:264–277CrossRefGoogle Scholar
  23. 23.
    Jose T, Moni G, Shalini S, Raju AJ, George JJ, George SC (2017) Multifunctional multi-walled carbon nanotube reinforced natural rubber nanocomposites. Indust Crops Prod 105:63–73CrossRefGoogle Scholar
  24. 24.
    Goodyear C (1853) Gum-elastic and its varieties: with a detailed account of its applications and uses, and of the discovery of vulcanization. Published for the authorGoogle Scholar
  25. 25.
    Medalia AI (1986) Electrical conduction in carbon black composites. Rubber Chem Technol 59:432–454CrossRefGoogle Scholar
  26. 26.
    Karasek L, Sumita M (1996) Characterization of dispersion state of filler and polymer-filler interactions in rubber-carbon black composites. J Mater Sci 31:281–289ADSCrossRefGoogle Scholar
  27. 27.
    Liu Q, Zhang Y, Xu H (2008) Properties of vulcanized rubber nanocomposites filled with nanokaolin and precipitated silica. Appl Clay Sci 42:232–237CrossRefGoogle Scholar
  28. 28.
    Endo M, Noguchi T, Ito M, Takeuchi K, Hayashi T, Kim YA et al (2008) Extreme-performance rubber nanocomposites for probing and excavating deep oil resources using multi-walled carbon nanotubes. Adv Funct Mater 18:3403–3409CrossRefGoogle Scholar
  29. 29.
    Carli LN, Roncato CR, Zanchet A, Mauler RS, Giovanela M, Brandalise RN et al (2011) Characterization of natural rubber nanocomposites filled with organoclay as a substitute for silica obtained by the conventional two-roll mill method. Appl Clay Sci 52:56–61CrossRefGoogle Scholar
  30. 30.
    Sun Y, Luo Y, Jia D (2008) Preparation and properties of natural rubber nanocomposites with solid-state organomodified montmorillonite. J Appl Polym Sci 107:2786–2792CrossRefGoogle Scholar
  31. 31.
    Kim M-S, Kim D-W, Ray Chowdhury S, Kim G-H (2006) Melt-compounded butadiene rubber nanocomposites with improved mechanical properties and abrasion resistance. J Appl Polym Sci 102:2062–2066CrossRefGoogle Scholar
  32. 32.
    López-Manchado MA, Herrero B, Arroyo M (2004) Organoclay–natural rubber nanocomposites synthesized by mechanical and solution mixing methods. Polym Inter 53:1766–1772CrossRefGoogle Scholar
  33. 33.
    Sui G, Zhong WH, Yang XP, Yu YH (2008) Curing kinetics and mechanical behavior of natural rubber reinforced with pretreated carbon nanotubes. Mater Sci Eng, A 485:524–531CrossRefGoogle Scholar
  34. 34.
    Sui G, Zhong W, Yang X, Zhao S (2007) Processing and material characteristics of a carbon-nanotube-reinforced natural rubber. Macromol Mater Eng 292:1020–1026CrossRefGoogle Scholar
  35. 35.
    Liu X, Kuang W, Guo B (2015) Preparation of rubber/graphene oxide composites with in situ interfacial design. Polymer 56:553–562CrossRefGoogle Scholar
  36. 36.
    Wu J, Xing W, Huang G, Li H, Tang M, Wu S et al (2013) Vulcanization kinetics of graphene/natural rubber nanocomposites. Polymer 54:3314–3323CrossRefGoogle Scholar
  37. 37.
    Bueche F (1961) Mullins effect and rubber–filler interaction. J Appl Polym Sci 5:271–281CrossRefGoogle Scholar
  38. 38.
    Govindjee S, Simo JC (1992) Mullins’ effect and the strain amplitude dependence of the storage modulus. Inter J Solids Struct 29:1737–1751CrossRefGoogle Scholar
  39. 39.
    Harwood J, Mullins L, Payne A (1965) Stress softening in natural rubber vulcanizates. Part II: stress softening effects in pure gum and filler loaded rubbers. J Appl Polym Sci 9:3011–3021CrossRefGoogle Scholar
  40. 40.
    Harwood J, Payne A (1966) Stress softening in natural rubber vulcanizates III: carbon black filled vulcanizates. Rubber Chem Technol 39:1544–1552CrossRefGoogle Scholar
  41. 41.
    Mullins L, Tobin N (1965) Stress softening in rubber vulcanizates. Part I: use of a strain amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber. J Appl Polym Sci 9:2993–3009CrossRefGoogle Scholar
  42. 42.
    Payne AR (1962) The dynamic properties of carbon black-loaded natural rubber vulcanizates. J Appl Polym Sci Part I 6:57–63CrossRefGoogle Scholar
  43. 43.
    Payne AR (1962) The dynamic properties of carbon black loaded natural rubber vulcanizates. J Appl Polym Sci Part II 6:368–372CrossRefGoogle Scholar
  44. 44.
    Payne A, Watson W (1963) Carbon black structure in rubber. Rubber Chem Technol 36:147–155CrossRefGoogle Scholar
  45. 45.
    Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42:339–362CrossRefGoogle Scholar
  46. 46.
    Diani J, Fayolle B, Gilormini P (2009) A review on the mullins effect. Euro Polym J 45:601–612CrossRefGoogle Scholar
  47. 47.
    Harwood J, Payne A (1966) Stress softening in natural rubber vulcanizates. Part III: carbon black‐filled vulcanizates. J Appl Polym Sci 10:315–324CrossRefGoogle Scholar
  48. 48.
    Fröhlich J, Niedermeier W, Luginsland HD (2005) The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos Part A Appl Sci Manufact 36:449–460CrossRefGoogle Scholar
  49. 49.
    Luginsland H-D, Fröhlich J, Wehmeier A (2002) Influence of different silanes on the reinforcement of silica-filled rubber compounds. Rubber Chem Technol 75:563–579CrossRefGoogle Scholar
  50. 50.
    Sadhu S, Bhowmick AK (2004) Preparation and properties of styrene–butadiene rubber based nanocomposites: the influence of the structural and processing parameters. J Appl Polym Sci 92:698–709CrossRefGoogle Scholar
  51. 51.
    Kotal M, Bhowmick AK (2015) Polymer nanocomposites from modified clays: recent advances and challenges. Prog Polym Sci 51:127–187CrossRefGoogle Scholar
  52. 52.
    Wu Y-P, Ma Y, Wang Y-Q, Zhang L-Q (2004) Effects of characteristics of rubber, mixing and vulcanization on the structure and properties of rubber/clay nanocomposites by melt blending. Macromol Mater Eng 289:890–894CrossRefGoogle Scholar
  53. 53.
    Zhu L, Wool RP (2006) Nanoclay reinforced bio-based elastomers: synthesis and characterization. Polymer 47:8106–8115CrossRefGoogle Scholar
  54. 54.
    Wang Y, Zhang L, Tang C, Yu D (2000) Preparation and characterization of rubber–clay nanocomposites. J Appl Polym Sci 78:1879–1883CrossRefGoogle Scholar
  55. 55.
    Zhang L, Wang Y, Wang Y, Sui Y, Yu D (2000) Morphology and mechanical properties of clay/styrene-butadiene rubber nanocomposites. J Appl Polym Sci 78:1873–1878CrossRefGoogle Scholar
  56. 56.
    Pramanik M, Srivastava SK, Samantaray BK, Bhowmick AK (2003) Rubber–clay nanocomposite by solution blending. J Appl Polym Sci 87:2216–2220CrossRefGoogle Scholar
  57. 57.
    Malkappa K, Rao BN, Jana T (2016) Functionalized polybutadiene diol based hydrophobic, water dispersible polyurethane nanocomposites: role of organo-clay structure. Polymer 99:404–416CrossRefGoogle Scholar
  58. 58.
    Lape NK, Nuxoll EE, Cussler E (2004) Polydisperse flakes in barrier films. J Membr Sci 236:29–37CrossRefGoogle Scholar
  59. 59.
    Nielsen LE (1967) Models for the permeability of filled polymer systems. J Macromol Sci Part A Chem 1:929–942CrossRefGoogle Scholar
  60. 60.
    Wang Y, Zhang H, Wu Y, Yang J, Zhang L (2005) Preparation and properties of natural rubber/rectorite nanocomposites. Euro Polym J. 41:2776–2783CrossRefGoogle Scholar
  61. 61.
    Wu Y-P, Jia Q-X, Yu D-S, Zhang L-Q (2003) Structure and properties of nitrile rubber (NBR)–clay nanocomposites by co-coagulating NBR latex and clay aqueous suspension. J Appl Polym Sci 89:3855–3858CrossRefGoogle Scholar
  62. 62.
    Jiang M-J, Dang Z-M, Xu H-P (2007) Giant dielectric constant and resistance-pressure sensitivity in carbon nanotubes/rubber nanocomposites with low percolation threshold. Appl Phys Lett 90:042914ADSCrossRefGoogle Scholar
  63. 63.
    Jiang M-J, Dang Z-M, Xu H-P (2006) Significant temperature and pressure sensitivities of electrical properties in chemically modified multiwall carbon nanotube/methylvinyl silicone rubber nanocomposites. Appl Phys Lett 89:182902ADSCrossRefGoogle Scholar
  64. 64.
    Jiang M-J, Dang Z-M, Xu H-P, Yao S-H, Bai J (2007) Effect of aspect ratio of multiwall carbon nanotubes on resistance-pressure sensitivity of rubber nanocomposites. Appl Phys Lett 91:072907ADSCrossRefGoogle Scholar
  65. 65.
    Wang H (2009) Dispersing carbon nanotubes using surfactants. Curr Opin Colloid Interface Sci 14:364–371CrossRefGoogle Scholar
  66. 66.
    Halpin J (1969) Stiffness and expansion estimates for oriented short fiber composites. J Compos Mater 3:732–734CrossRefGoogle Scholar
  67. 67.
    Bhattacharyya S, Sinturel C, Bahloul O, Saboungi M-L, Thomas S, Salvetat J-P (2008) Improving reinforcement of natural rubber by networking of activated carbon nanotubes. Carbon 46:1037–1045CrossRefGoogle Scholar
  68. 68.
    Deng F, Ito M, Noguchi T, Wang L, Ueki H, K-i Niihara et al (2011) Elucidation of the reinforcing mechanism in carbon nanotube/rubber nanocomposites. ACS Nano 5:3858–3866CrossRefGoogle Scholar
  69. 69.
    Dang Z-M, Jiang M-J, Xie D, Yao S-H, Zhang L-Q, Bai J (2008) Supersensitive linear piezoresistive property in carbon nanotubes∕ silicone rubber nanocomposites. J Appl Phys 104:024114ADSCrossRefGoogle Scholar
  70. 70.
    Jo JO, Saha P, Kim NG, Chang Ho C, Kim JK (2015) Development of nanocomposite with epoxidized natural rubber and functionalized multiwalled carbon nanotubes for enhanced thermal conductivity and gas barrier property. Mater Des 83:777–785CrossRefGoogle Scholar
  71. 71.
    Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRefGoogle Scholar
  72. 72.
    McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J et al (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404CrossRefGoogle Scholar
  73. 73.
    Song SH, Jeong HK, Kang YG (2010) Preparation and characterization of exfoliated graphite and its styrene butadiene rubber nanocomposites. J Indus Eng Chem 16:1059–1065CrossRefGoogle Scholar
  74. 74.
    Potts JR, Shankar O, Du L, Ruoff RS (2012) Processing–morphology–property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites. Macromolecules 45:6045–6055ADSCrossRefGoogle Scholar
  75. 75.
    Lian H, Li S, Liu K, Xu L, Wang K, Guo W (2011) Study on modified graphene/butyl rubber nanocomposites. I: preparation and characterization. Polym Eng Sci 51:2254–22560CrossRefGoogle Scholar
  76. 76.
    Xing W, Tang M, Wu J, Huang G, Li H, Lei Z et al (2014) Multifunctional properties of graphene/rubber nanocomposites fabricated by a modified latex compounding method. Compos Sci Technol 99:67–74CrossRefGoogle Scholar
  77. 77.
    Ozbas B, O’Neill CD, Register RA, Aksay IA, Prud’homme RK, Adamson DH (2012) Multifunctional elastomer nanocomposites with functionalized graphene single sheets. J Polym Sci, Part B: Polym Phys 50:910–916ADSCrossRefGoogle Scholar
  78. 78.
    Du J, Zhao L, Zeng Y, Zhang L, Li F, Liu P et al (2011) Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure. Carbon 49:1094–1100CrossRefGoogle Scholar
  79. 79.
    Schaefer DW, Justice RS (2007) How Nano Are Nanocomposites? Macromolecules 40:8501–8517ADSCrossRefGoogle Scholar
  80. 80.
    Pang H, Chen T, Zhang G, Zeng B, Li Z-M (2010) An electrically conducting polymer/graphene composite with a very low percolation threshold. Mater Lett 64:2226–2229CrossRefGoogle Scholar
  81. 81.
    Li M, Gao C, Hu H, Zhao Z (2013) Electrical conductivity of thermally reduced graphene oxide/polymer composites with a segregated structure. Carbon 65:371–373CrossRefGoogle Scholar
  82. 82.
    Scherillo G, Lavorgna M, Buonocore GG, Zhan YH, Xia HS, Mensitieri G et al (2014) Tailoring assembly of reduced graphene oxide nanosheets to control gas barrier properties of natural rubber nanocomposites. ACS Appl Mater Interfaces 6:2230–2234CrossRefGoogle Scholar
  83. 83.
    Bharadwaj RK (2001) Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34:9189–99192ADSCrossRefGoogle Scholar
  84. 84.
    Moosavi A, Sarkomaa P, Polashenski W Jr (2003) The effective conductivity of composite materials with cubic arrays of multi-coated spheres. Appl Phys A 77:441–448ADSCrossRefGoogle Scholar
  85. 85.
    Worldstyling (2018) Automotive rubber parts & plastic parts supply by worldstylingGoogle Scholar
  86. 86.
    Takahashi S, Goldberg H, Feeney C, Karim D, Farrell M, O’leary K et al (2006) Gas barrier properties of butyl rubber/vermiculite nanocomposite coatings. Polymer 47:3083–3093CrossRefGoogle Scholar
  87. 87.
    Thankappan Nair S, Vijayan PP, Xavier P, Bose S, George SC, Thomas S (2015) Selective localisation of multi walled carbon nanotubes in polypropylene/natural rubber blends to reduce the percolation threshold. Compos Sci Technol 116:9–17CrossRefGoogle Scholar
  88. 88.
    Wiwattananukul R, Fan B, Yamaguchi M (2017) Improvement of rigidity for rubber-toughened polypropylene via localization of carbon nanotubes. Compos Sci Technol 141:106–112CrossRefGoogle Scholar
  89. 89.
    Sumita M, Sakata K, Hayakawa Y, Asai S, Miyasaka K, Tanemura M (1992) Double percolation effect on the electrical conductivity of conductive particles filled polymer blends. Colloid Polym Sci 270:134–139CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.DST-CSIR National Centre for Nanostructured MaterialsCouncil for Scientific and Industrial ResearchPretoriaSouth Africa
  2. 2.Department of Applied ChemistryUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations