Continuous Method for Solution of Gravity Prospecting Problems

  • I. V. BoikovEmail author
  • A. I. Boikova
  • O. A. Baulina
Conference paper
Part of the Springer Proceedings in Earth and Environmental Sciences book series (SPEES)


The continuous operator method for solving operator equations is presented. An applications of the continuous operator method for solving linear and nonlinear inverse problems of logarithmic and Newtonian potentials are given.


Inverse tasks Gravity prospecting Continuous method Nonlinear models 


  1. Boikov I.V., Moiko N.V. (1999) An iterative method for solving the inverse gravity problem for a contact surface// Izvestia, Physics of the Solid Earth. –1999. –№ 2. – P. 52–56.Google Scholar
  2. Boikov I.V., Boikova A.I. (2009) A parallel method of solving nonlinear inverse problems in gravimetry and magnetometry// Izvestiya, Physics of the Solid Earth,2009. Volume 45, Issue 3, pp. 248-257.CrossRefGoogle Scholar
  3. Boikov I.V., Boikova A.I. (2013) Priblizennie metodi resenia pryamich i obratnich zadach gravimetrii (Approximate methods for solution direct and inverse task of gravity prospecting) Penza: Penzensk. Gos. Univ., 2013. 510 p.Google Scholar
  4. Boikov I.V. (1990) Stability of Solutions of Differential and Difference Equations in Critical Cases// Dokl. Akad. Nauk SSSR, 1990, vol. 314, no. 6, pp. 1298–1300.Google Scholar
  5. Boikov I.V. (2008) Ustoichivost’ reshenii differentsial’nykh uravnenii (Stability of Solutions of Differential Equations), Penza: Penzensk. Gos. Univ., 2008. 244 p.Google Scholar
  6. Boikov I.V. (2012) On a continuous method for solving nonlinear operator equations// Differential equations. 2012, V. 48, No 9. P. 1308 – 1314.CrossRefGoogle Scholar
  7. Boykov I.V., Roudnev V.A., Boykova A.I., Baulina O.A. (2018) New iterative method for solving linear and nonlinear hypersingular integral equations//Applied Numerical Mathematics. Volume 127, May 2018, Pages 280–305.Google Scholar
  8. Daletskii Yu.L. and Krein M.G. (1970) Ustoichivost’ reshenii differentsial’nykh uravnenii v banakhovom prostranstve (Stability of Solutions of Differential Equations in Banach Space), Moscow: Nauka, 1970.Google Scholar
  9. Dekker K. and Verwer J.G. (1988) Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, Amsterdam: North Holland Publishing Co., 1984. Translated under the title Ustoichivost’ metodov Runge-Kutty dlya zhestkikh nelineinykh differentsial’nykh uravnenii, Moscow: Mir, 1988.Google Scholar
  10. Gavurin M.K. (1958) Nonlinear Functional Equations and Continuous Analogues of Iteration Methods, Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 5, pp. 18–31.Google Scholar
  11. Glasko V.B., Ostromogil’skii A.Kh., Filatov V.G. (1970) Reestablishment of the depth and shape of a contact surface by regularization//USSR Computational Mathematics and Mathematical Physics.1970. V.10, No 5. P. 284–291.Google Scholar
  12. Mudretsova E.A., Veselov K.E. (1990) Gravirazvedka (Gravity prospecting) Moscow: Nedra, 1990. – 607 p.Google Scholar
  13. Puzynina T.P. (2003) Modified Newton Schemes for the Numerical Investigation of Quantum-Field Models, Doctoral (Phys.-Math.) Dissertation, Tver, 2003.Google Scholar
  14. Sokolov N.P. (1972) Vvedenie v teoriu mnogomernich matrith (Introduction to multidimensional matrixes) Kiev: Naukova Dumka. 1972. 177 p.Google Scholar
  15. Starostenko V.I. (1978) Ustoichivie chislennie metodi v zadachach gravimetrii (Stable numerical methods in gravity problems), Kiev: Naukova Dumka. 1978. 226 p.Google Scholar
  16. Strakhov V.N. (1970) Some aspects of the plane gravitational problem.// Izvestia of Academy of Science of USSR. Physics of the Solid Earth. – 1970. – No. 12. – P. 32–44.Google Scholar
  17. Tikhonov A.N., Glasko V.B. (1965) Use of the regularization method in non-linear problems//USSR Computational Mathematics and Mathematical Physics.1965. V. 5, No 3. P. 93–107.Google Scholar
  18. Tikhonov A.N. and Arsenin V.J. (1990) Solutions of Ill-Posed Problems, Wiley, New-York, 1977.Google Scholar
  19. Zhdanov M.S. (2002) Geophysical Inverse Theory and Regularization Problems. – N. Y. : Elsevier 2002. – 610 p.Google Scholar
  20. Zhidkov E.N., Makarenko G.I., and Puzynin M.V. (1973) A Continuous Analogue of Newton’s Method in Nonlinear Problems of Physics, Fiz. Elem. Chastits Atomn. Yadra, 1973, vol. 4, no. 1, pp. 127–166.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Computer EngineeringPenza State UniversityPenzaRussia

Personalised recommendations