Intermediate Conducting Layers in the Continental Earth’s Crust—Myths and Reality

  • A. A. ZhamaletdinovEmail author
Conference paper
Part of the Springer Proceedings in Earth and Environmental Sciences book series (SPEES)


The nature and scale of intermediate conducting layers propagation in the continental earth’s crust are discussed in this paper. The myth on the existence of intermediate conducting layers in the Earth’s crust at the depth of 10–20 km firstly appeared owing to results of the super-deep dipole-dipole sounding performed in the Gulf of Finland in 1946. Since then for the many decades a large number of anomalies of electrical conductivity in the earth’s crust have been detected. The authors of these studies interpreted the anomalies as the existence of intermediate (sub horizontal) conducting layers of fluidal (or temperature) origin at the depths of the first tens of kilometers, same as in the Gulf of Finland. But analysis of experimental data presented in the article allows to conclude that in most cases the anomalies of electrical conductivity in the Earth’s crust appears due to presence of a steeply dipping electronically conductive sulfide and carbon (graphite) bearing rocks of organic nature («SC-Layer» of Semenov). Fluids exist only in the uppermost part of the continental Earth’s crust in the depth interval from 2–3 to 7–10 km. They are detected as intermediate conductive area associated with the influence of dilatancy-diffusive processes and named as “DD-layer”. The nature of electrical conductivity anomalies in the Earth’s crust represents fundamental problem in the interpretation of the deep sounding data. Solution of the problem determines the role of crustal conductors in the study of geological structure and composition of the Earth’s interior.


Sulfide and carbon bearing rocks SC-layer Fluids Earth crust Dilatancy-diffusive layer DD-layer 


  1. Adam A., (1974): Electric crustal anomalies in the Carpathian Basin and their origin in the rock composition. // Acta Geol. Hung. 18. Pp. 13–22.Google Scholar
  2. Blohm E.K., Worzyk P., Scriba H. (1977). Geoelectrical deep soundings in Southern Africa using the Cabora Bassa power line. // Journal of Geophysics, 43. Pp. 665–679.Google Scholar
  3. Cˇermak, V. & Lastovicˇkova, M. (1987). Temperature Profiles in the Earth of Importance to Deep Electrical conductivity Models. // Pageoph, vol. 125. Pp. 255–284.Google Scholar
  4. Fel’dman I.S & Zhamaletdinov AA. (2009). Fluid and thermal conductivity model of the lithosphere. // In: Proc. of Int. Conf. Apatity. Geological Institute of the KSC RAS. Pp. 100–107.Google Scholar
  5. Goryinov P.M.; Davidenko I.V. (1979). Tektonic- kesson effect in rocks and ore deposits – an important new phenomenon ingeodynamics. // Doklady FN USSR, Vol. 247, No 5. Pp. 1212–1215.Google Scholar
  6. Joedicke H. (1992). Water and graphite in the Earth’s crust —An approach to interpretation of conductivity models // Surveys in Geophysics, 13. Pp. 381–407.Google Scholar
  7. Jones A.G. (1987). MT and reflection: an assential comb. // Geophys. J.R. astr. Soc., N89. Pp.7–18.Google Scholar
  8. Keller G.V. (1963). Electrical properties in the deep crust. // IEE Trans. Antennas and Propagat., V. 11, N 3. Pp. 615–637.Google Scholar
  9. Kovtun A.A., Moiseev O.N., Vagin C.A., Vardanjants I.L., Kokvina E.L., Saveljev A.A., Uspensky N.I. (1986). MT- and AMT-sounding on the Kola peninsula and in Kareliya. // Deep electrical conductivity of the Baltic shield. Petrozavodsk. Karelian branch of RAS. Pp. 34–48.Google Scholar
  10. Kraev, A.P., Semenov, A.S., Tarkhov, A.G. (1947). Ultra-deep Electrical Sounding. // Razvedka Nedr, 1947, no. 3. Pp. 40–41.Google Scholar
  11. Lundholm R. (1946). The experimental sending of d.c. through the Earth in Sweden. // Proceedings of the Conf. Internat. des Grands Reseaux Electriques a Haute Teusion . Paper No 134Google Scholar
  12. Nikolaevsky V.N. (1996). Cataclastic breaking down of rocks of earth crust and anomaly of geophysical fields. // Izv. Akad. Nauk, Ser. Fiz. Zemlin No. 4, Pp. 41–50.Google Scholar
  13. Rokitjansky I.I. (1981). Inductive soundings of the Earth. // Kiev. Naukova Dumka. 296 pGoogle Scholar
  14. Rodkin M.F. (1993). The Role of a Deep Fluid Regime in Geodynamics and Seismotectonics // MoscowGoogle Scholar
  15. Semenov A.S. (1970). The Nature of Electrical Conductivity in the Ancient Basement. // Vestnik SPb Univ. No. 12. Pp. 19–26.Google Scholar
  16. Semenov A.S. & Zhamaletdinov A.A. (1981). Deep Electrical Soundings. // SPb. Vestn. Leningr. Univ., Ser. 7: Geol., Geogr., Vol. 3, No. 18. Pp. 5–11Google Scholar
  17. Vanyan L.L. (1997). Electromagnetic soundings. // Moscow. ”Nauchny Mir”. 218 pGoogle Scholar
  18. Varentsov Iv.M., Engels M., Korja T., Smirnov M.Yu. and the BEAR Working Group. (2002). The generalized geoelectric model. // Fizika Zemli, No. 10. Pp. 64–105.Google Scholar
  19. Vladimirov N.P. & Dmitriev V.I. (1972). Geoel. Sect. of crust and upper mantle in the Russian platform acc. to MTS. // Izvestiya Russ. Ac. of Sci. Phys. of the Solid Earth. No 6. Pp. 100–103.Google Scholar
  20. Yardley B.W.D. & Valley J.W. (1997). The petrologic case for a dry lower crust. // Journal of Geophysical Research, V. N B6. Pp. 12173–12185.Google Scholar
  21. Zhamaletdinov A.A. (1996). Graphite in the Earth’s Crust and Electrical Conductivity Anomalies. // Izvestiya, Physics of the Solid Earth, Vol. 32, No. 4. Pp. 272–288.Google Scholar
  22. Zhamaletdinov A.A. (1990). Model of electrical conductivity of lithosphere by results of studies with controlled sources (Baltic shield, Russian plateform). // Leningrad. “Nauka”. 159 p.Google Scholar
  23. Zhamaletdinov A.A., Shevtsov A.N., Tokarev A.D., Korja T., Pedersen L. Experiment on the Deep Frequency Sounding and DC Measurements in the Central Finland Granitoid Complex. // Electromagnetic Induction in the Earth. 14-th Workshop in Sinaia (Romania), 1998. P. 83Google Scholar
  24. Zhamaletdinov A.A., Shevtsov A.N., Tokarev A.D., and Korja T. (2002). EMFS of the Earth Crust beneath the CFGC // Izvestiya, Physics of the Solid Earth, Vol. 38, No. 11. P. 954–967.Google Scholar
  25. Zhamaletdinov A.A., Shevtsov A.N., T.G. Korotkova et al. (2011). Deep EM Sounding of the Lithosphere (FENICS). // Izvestiya, Physics of the Solid Earth. Vol. 47, No. 1. Pp. 2–22.Google Scholar
  26. Zhamaletdinov A.A, The Largest in the World Anomalies of Electrical Conductivity and their Nature - a review.// Global Journal of Earth Science and Engineering, 2014, 1, 84–96CrossRefGoogle Scholar
  27. Zhamaletdinov A. A., E. P. Velikhov, A. N. Shevtsov, V. V. Kolobov, V. E. Kolesnikov, A. A. Skorokhodov, T. G. Korotkova, V. V. Ivonin, P. A. Ryazantsev, and M. A. Biruly. The Kovdor-2015 Experiment: Study of the Parameters of a Conductive Layer of Dilatancy–Diffusion Nature (DD Layer) in the Archaean Crystalline Basement of the Baltic Shield. // Doklady Earth Sciences. 2017. Vol. 474. Part 2. pp. 641–645.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.St. Petersburg Branch of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Geological Institute of the Kola Science Center of RASApatityRussia

Personalised recommendations