Advertisement

Disc Disruption and Accretion Curtains

  • C. G. Campbell
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 456)

Abstract

The intermediate polars, some X-ray binary pulsars and the accreting millisecond pulsars have magnetic primary stars accreting from a partially disrupted disc via an inner magnetically channelled curtain flow. The stellar magnetic field and the associated magnetosphere interact with the disc in a way which is affected by the strength of its magnetic diffusivity. For sufficiently large η values, the stellar poloidal field lines remain closed and linked to the disc. For smaller values of η field line opening can occur and wind flows can result from the disc and the primary star. Angular momentum can be transported in a variety of ways.

Field lines inside the corotation radius tend to remain closed and the disc becomes disrupted as a result of vertical expansion due to magnetic heating. Expanding material can be accelerated through a sonic point and then flow through a magnetically channelled curtain region to accrete on to the star through a narrow shock region. A detailed study of disc disruption and the curtain flow is presented here.

References

  1. Agapitou, V., Papaloizou, J.C.B., 2000, MNRAS, 317, 273.ADSCrossRefGoogle Scholar
  2. Aly, J.J., 1980, A&A, 86, 192.ADSGoogle Scholar
  3. Armitage, P.J., Clarke, C.J., 1996, MNRAS, 280, 458.ADSCrossRefGoogle Scholar
  4. Bardou, A., Heyvaerts, J., 1996, A&A, 307, 1009.ADSGoogle Scholar
  5. Bath, G.T., Evans, W.D., Pringle, J.E., 1974, MNRAS, 166, 113.ADSCrossRefGoogle Scholar
  6. Brandenburg, A., Campbell, C.G., 1998, MNRAS, 298, 223.ADSCrossRefGoogle Scholar
  7. Bult, P., van der Klis, M., 2014, ApJ, 789, 99.ADSCrossRefGoogle Scholar
  8. Campbell, C.G., 1987, MNRAS, 229, 405.ADSCrossRefGoogle Scholar
  9. Campbell, C.G., 1992, GAFD, 63, 179.CrossRefGoogle Scholar
  10. Campbell, C.G., 1998, MNRAS, 301, 754.ADSCrossRefGoogle Scholar
  11. Campbell, C.G., 2010, MNRAS, 403, 1339.ADSCrossRefGoogle Scholar
  12. Campbell, C.G., 2012, MNRAS, 420, 1034.ADSCrossRefGoogle Scholar
  13. Campbell, C.G., 2014, GAFD, 108, 333.CrossRefGoogle Scholar
  14. Campbell, C.G., Heptinstall, P., 1998a, MNRAS, 299, 31.ADSCrossRefGoogle Scholar
  15. Campbell, C.G., Heptinstall, P., 1998b, MNRAS, 301, 558.ADSCrossRefGoogle Scholar
  16. Davies, R.E., Pringle, J.E., 1981, MNRAS, 196, 209.ADSCrossRefGoogle Scholar
  17. Ghosh, P., Lamb, F.K., 1979a, ApJ, 232, 259.ADSCrossRefGoogle Scholar
  18. Ghosh, P., Lamb, F.K., 1979b, ApJ, 234, 296.ADSCrossRefGoogle Scholar
  19. Giacconi, R., Gursky, H., Kellogg, E., Schreier, E., Tananbaum, H., 1971, ApJ, 167, L67.ADSCrossRefGoogle Scholar
  20. Goodson, A.P., Winglee, R.M., 1999, ApJ, 524, 159.ADSCrossRefGoogle Scholar
  21. Goodson, A.P., Winglee, R.M., Bohm, K.H., 1997, ApJ, 489, 199.ADSCrossRefGoogle Scholar
  22. Illarionov, A.F., Sunyaev, R.A., 1975, A&A, 39. 105.ADSGoogle Scholar
  23. Koldoba, A.V., Lovelace, R.V.E., Ustyugova, G.V., Romanova, M.M., 2002, ApJ, 123, 2019.ADSCrossRefGoogle Scholar
  24. Kundt, W., Robnik, M., 1980, A&A, 91, 305.ADSGoogle Scholar
  25. Lii, P.S., Romanova, M.M., Ustyugova, G.V., Koldoba, A.V., Lovelace, R.V.E., 2014, MNRAS, 441, 86.ADSCrossRefGoogle Scholar
  26. Long, M., Romanova, M.M., Lovelace, R.V.E., 2007, MNRAS, 374, 436.ADSCrossRefGoogle Scholar
  27. Lovelace, R.V.E., Romanova, M.M., Bisnovatyi-Kogan, G.S., 1995, MNRAS, 275, 244.ADSCrossRefGoogle Scholar
  28. Lubow, S.H., Papaloizou, J.C.B., Pringle, J.E., 1994, MNRAS, 267, 235.ADSCrossRefGoogle Scholar
  29. Matt, S., Pudritz, R.E., 2005, MNRAS, 356, 167.ADSCrossRefGoogle Scholar
  30. Matthews, O.M., Speith, R., Truss, M.R., Wynn, G.A., 2005, MNRAS, 356, 66.ADSCrossRefGoogle Scholar
  31. Paatz, G., Camenzind, M., 1996, A&A, 308, 77.ADSGoogle Scholar
  32. Pringle, J. E., Rees, M. J., 1972, A&A, 21, 1.ADSGoogle Scholar
  33. Romanova, M.M., Ustyugova, G.V., Koldoba, A.V., Lovelace, R.V.E., 2002, ApJ, 578, 420.ADSCrossRefGoogle Scholar
  34. Romanova, M.M., Ustyugova, G.V., Koldoba, A.V., Wick, J.V., Lovelace, R.V.E., 2003, ApJ, 595, 1009.ADSCrossRefGoogle Scholar
  35. Romanova, M.M., Ustyugova, G.V., Koldoba, A.V., Lovelace, R.V.E., 2012, MNRAS, 421, 63.ADSGoogle Scholar
  36. Shu, F., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., Lizano, S., 1994, ApJ, 429, 781.ADSCrossRefGoogle Scholar
  37. Tananbaum, H., Gursky, H., Kellogg, E.M., Levinson, R., Schreier, E., Giacconi, R., 1972, ApJ, 174, L143.ADSCrossRefGoogle Scholar
  38. Ustyugova, G.V., Koldoba, A.V., Romanova, M.M., Locelace, R.V.E., 2006, ApJ, 646, 304.ADSCrossRefGoogle Scholar
  39. Wang, Y.M., 1987, A&A, 183, 257.ADSGoogle Scholar
  40. Wang, Y.M., Robertson, J.A., 1985, A&A, 151, 361.ADSGoogle Scholar
  41. Wynn, G.A., King, A.R., Horne, K., 1997, MNRAS, 286, 436.ADSCrossRefGoogle Scholar
  42. Zanni, C., Ferreira, J., 2009, A&A, 508, 1117.ADSCrossRefGoogle Scholar
  43. Zanni, C., Ferreira, J., 2013, A&A, 550, A99.ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • C. G. Campbell
    • 1
  1. 1.School of Mathematics, Statistics and PhysicsNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations