Accretion Disc Magnetic Winds

  • C. G. Campbell
Part of the Astrophysics and Space Science Library book series (ASSL, volume 456)


There is observational evidence that accretion discs in interacting binaries have wind flows emanating from their surfaces, and that the flow tends to become collimated parallel to the disc rotation axis. It is known that a differentially rotating, turbulent disc can have a large-scale magnetic field generated by dynamo action. Magnetically channelled winds are effective at removing angular momentum from accretion discs, provided that the initial flow is well sub-Alfvenic and the poloidal magnetic field has a suitable geometry with a sufficient inclination to the vertical at the disc surface.

Firstly, the wind launching and field source problems are considered, and wind structure calculations are reviewed. A detailed analysis of the disc-wind system is then presented, incorporating a dynamo generated magnetic field, with solutions for the radial and vertical structures of the disc and for the sub-Alfvénic wind region. The removal of angular momentum by the wind outflow can make a major contribution to driving the disc inflow, together with viscosity. A significant amount of mass can be lost from the inner region of the disc, due to enhanced wind mass fluxes. Disc models having inflows driven purely by magnetic winds tend to be subject to a field bending instability, but this can be quenched by allowing for a temperature dependent turbulent viscosity.


  1. Blandford, R. D., Payne, D. G., 1982, MNRAS, 199, 883.ADSCrossRefGoogle Scholar
  2. Campbell, C.G., 1999, MNRAS, 310, 1175.ADSCrossRefGoogle Scholar
  3. Campbell, C. G., 2001, MNRAS, 323, 211.ADSCrossRefGoogle Scholar
  4. Campbell, C. G., 2003, MNRAS, 345, 123.ADSCrossRefGoogle Scholar
  5. Campbell, C. G., 2005, MNRAS, 361, 396.ADSCrossRefGoogle Scholar
  6. Campbell, C. G., 2010, MNRAS, 401, 177.ADSCrossRefGoogle Scholar
  7. Campbell, C. G., 2014, GAFD, 108, 350.CrossRefGoogle Scholar
  8. Campbell, C.G., Papaloizou, J.C.B., Agapitou, V., 1998, MNRAS, 300, 315.ADSCrossRefGoogle Scholar
  9. Cao, X., Spruit, H.C., 2002, A&A, 385, 289.ADSCrossRefGoogle Scholar
  10. Casse, F., Keppers, R., 2002, ApJ, 581, 988.ADSCrossRefGoogle Scholar
  11. Cordova, F. A., Mason, K. O., 1982, ApJ, 260, 716.ADSCrossRefGoogle Scholar
  12. Dhillon, V. S., Rutten, R. G. M., 1995, MNRAS, 277, 777.ADSCrossRefGoogle Scholar
  13. Ferreira, J., 1997, A&A, 319, 340.ADSGoogle Scholar
  14. Fender, R. P., Gallo, E., Jonker, P., 2003, MNRAS, 343, L99.ADSCrossRefGoogle Scholar
  15. Fendt, C., Cemeljic, M., 2002, A&A, 395, 1045.ADSCrossRefGoogle Scholar
  16. Froning, C. S., Long, K. S., Knigge, C., 2003, ApJ, 584, 433.ADSCrossRefGoogle Scholar
  17. Heap, S. R., et al., 1978, Nature, 275, 385.ADSCrossRefGoogle Scholar
  18. Heyvaerts, J., Norman, C., 1989, ApJ, 347, 1055.ADSCrossRefGoogle Scholar
  19. Honeycutt, R. K., Schlegal, E. M., Kaitchuck, R. H., 1986, ApJ, 302, 388.ADSCrossRefGoogle Scholar
  20. Knigge, K., Long, K. S., Blair, W. P., Wade, R. A., 1997, ApJ, 476, 291.ADSCrossRefGoogle Scholar
  21. Li, Z., 1995, ApJ, 444, 848.ADSCrossRefGoogle Scholar
  22. Long, K. S., Knigge, C., 2002, ApJ, 579, 725.ADSCrossRefGoogle Scholar
  23. Long, K. S., Mauche, C. W., Raymond, J. C., Szkody, P., Mattei, J. A., 1996, ApJ, 469, 841.ADSCrossRefGoogle Scholar
  24. Lubow, S., Papaloizou, J.C.B., Pringle, J.E., 1994, MNRAS, 268, 1010.ADSCrossRefGoogle Scholar
  25. Mauche, C. W., et al., 1994, ApJ, 424, 347.ADSCrossRefGoogle Scholar
  26. Migliari, S., Fender, R. P., 2006, MNRAS, 366, 79.ADSCrossRefGoogle Scholar
  27. Murray, N., Chiang, J., 1996, Nature, 382, 789.ADSCrossRefGoogle Scholar
  28. Ogilvie, G.I., 1997, MNRAS, 288, 63.ADSCrossRefGoogle Scholar
  29. Ogilvie, G. I., Livio, M., 2001, ApJ, 553, 158.ADSCrossRefGoogle Scholar
  30. Ouyed, R., Pudritz, R. E., 1997a, ApJ, 482, 712.ADSCrossRefGoogle Scholar
  31. Ouyed, R., Pudritz, R. E., 1997b, ApJ, 484, 794.ADSCrossRefGoogle Scholar
  32. Ouyed, R., Pudritz, R. E., 1999, MNRAS, 309, 233.ADSCrossRefGoogle Scholar
  33. Pelletier, G., Pudritz, R.E., 1992, ApJ, 394, 117.ADSCrossRefGoogle Scholar
  34. Pudritz, R.E., Ouyed, R., Fendt, C., Brandenburg, A., 2007, in Protostars and Planets, Tucson, p277.Google Scholar
  35. Rekowski, M.V., Rudiger, G., Elstner, D., 2000, A&A, 358, 813.ADSGoogle Scholar
  36. Reyes-Ruiz, M., 2000, MNRAS, 319, 1039.ADSCrossRefGoogle Scholar
  37. Rothstein, D.M., Lovelace, R.V.E., 2008, ApJ, 677, 1221.ADSCrossRefGoogle Scholar
  38. Sheikhnezami, S., Fendt, C., Porth, O., Vaidya, B., Ghanbari, J., 2012, ApJ, 757, 65.ADSCrossRefGoogle Scholar
  39. Stepanovs, D., Fendt, C., 2014, ApJ, 793, 31.ADSCrossRefGoogle Scholar
  40. Stone, J.M., Norman, M.L., 1994, ApJ, 433, 746.ADSCrossRefGoogle Scholar
  41. Tzeferacos, P., Ferrari, A., Mignone, A., Zanni, C., Bodo, G., Massaglia, S., 2009, MNRAS, 400, 820.ADSCrossRefGoogle Scholar
  42. von Rekowski, B., Brandenburg, A., Dobler, W., Shukurov, A., 2003, A&A, 398, 825.ADSCrossRefGoogle Scholar
  43. Zanni, C., Ferrari, A., Rosner, R., Bodo, G., Massaglia, S., 2007, A&A, 469, 811.ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • C. G. Campbell
    • 1
  1. 1.School of Mathematics, Statistics and PhysicsNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations