Advertisement

Stellar Magnetic Winds

  • C. G. Campbell
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 456)

Abstract

The tidally influenced secondary stars in interacting binaries are rapidly rotating and possess convective envelopes or are fully convective. This makes the generation of large-scale magnetic fields in such stars very likely, and magnetically influenced wind flows from the stellar surface would then lead to magnetic braking. The secondary would be spun down to an under-synchronous state and tides would then operate to spin the star up at the expense of the orbital angular momentum. This mechanism can account for the higher mass transfer rates occurring in binaries above the period gap, and hence the theory of magnetic braking has important application to interacting binaries.

The essentials of stellar magnetic braking theory are presented here, with particular emphasis on the fast rotator regime. This is applied to derive mass transfer rates in binaries with periods ≳ 3.0 h, for a range of laws relating the secondary’s surface magnetic field to its rotation rate. Explanations for the period gap, and why AM Herculis binaries appear not to be affected by the gap, are discussed.

References

  1. Campbell, C.G., 1997, MNRAS, 291, 250.ADSCrossRefGoogle Scholar
  2. Campbell, C.G., Papaloizou, J.C.B., 1983, MNRAS, 204, 433.ADSCrossRefGoogle Scholar
  3. Collier Cameron, A., Robinson, R.D., 1989, MNRAS, 238, 657.ADSCrossRefGoogle Scholar
  4. Golub, L., 1983, In IAU Colloquium 71., Activity in Red Stars, eds., Byrne, P.B. and Rodono, M., Reidel, 102, 83.Google Scholar
  5. Kippenhahn, R., Weigert, A., 1990, Stellar Structure and Evolution, Springer.Google Scholar
  6. Li, J., Wu, K., Wickramasinghe, D.T., 1994, MNRAS, 268, 61.ADSCrossRefGoogle Scholar
  7. Mestel, L., 1967, in Plasma Astrophysics, ed. Sturrock, P.A., Academic Press, London.Google Scholar
  8. Mestel, L., 1968, MNRAS, 138, 359.ADSCrossRefGoogle Scholar
  9. Mestel, L., 2012, Stellar Magnetism, Second Edition, Oxford University Press.CrossRefGoogle Scholar
  10. Mestel, L., Spruit, H.C., 1987, MNRAS, 226, 57.ADSCrossRefGoogle Scholar
  11. Okamoto, I., 1974, MNRAS, 166, 683.ADSCrossRefGoogle Scholar
  12. Paczynski, B., 1967, AcA, 17, 287.ADSGoogle Scholar
  13. Pallavicini, R., Golub, L., Rosner, R., Vaiana, G.S., Ayres, T., Linsky, J.L., 1981, ApJ, 248, 279.ADSCrossRefGoogle Scholar
  14. Parker, E.N., 1963, Interplanetary Dynamical Processes, Interscience, New York.zbMATHGoogle Scholar
  15. Pizzo, V., Schwenn, R., Marsch, E., Rosenbrauer, H., Muehlhaeuser, K.H., Neubrauer, F.M., 1983, ApJ, 271, 335.ADSCrossRefGoogle Scholar
  16. Pneuman, G.W., Kopp, R.A., 1971, SoPh, 18, 258.ADSGoogle Scholar
  17. Rappaport, S., Verbunt, F., Joss. P.C., 1983, ApJ, 275, 713.ADSCrossRefGoogle Scholar
  18. Saar, S.H., 1991, in The Sun and Cool Stars: Activity, Magnetism, Dynamos., eds Tuominen, I., Moss, D., Rudiger, G., Springer, Berlin, 380, 389.Google Scholar
  19. Sakurai, T., 1985, A&A, 152, 121.ADSGoogle Scholar
  20. Sakurai, T., 1990, CoPhR, 12, 247.ADSGoogle Scholar
  21. Schatzman, E., 1962, AnAp, 25, 18.ADSGoogle Scholar
  22. Skumanich, A., 1972, ApJ, 171, 565.ADSCrossRefGoogle Scholar
  23. Spruit, H.C., Ritter, H., 1983, A&A, 124, 267.ADSGoogle Scholar
  24. Taam, R.E., Spruit. H.C., 1989, ApJ, 345, 972.ADSCrossRefGoogle Scholar
  25. Verbunt, F., Zwaan, C., 1981, A&A, 100, L7.ADSGoogle Scholar
  26. Warner, B., 1995, Cataclysmic Variable Stars, Cambridge University Press.CrossRefGoogle Scholar
  27. Weber, E.J., Davis, L., 1967, ApJ, 148, 217.ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • C. G. Campbell
    • 1
  1. 1.School of Mathematics, Statistics and PhysicsNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations