Intrinsic Magnetism in Accretion Discs

  • C. G. Campbell
Part of the Astrophysics and Space Science Library book series (ASSL, volume 456)


The generation of magnetic fields in accretion discs is addressed, together with the effects of large-scale magnetic fields on the disc structure. Standard mean-field dynamos are considered, which can generate large-scale magnetic fields in discs. Toroidal magnetic field is generated by the shearing of the radial field, while turbulence with Coriolis force and vertical stratification lead to the α-effect which converts toroidal field to poloidal field. The magnetorotational instability can act as a source of turbulence, since sub-thermal magnetic fields de-stabilize Keplerian disc flows, drawing energy from the differential rotation via the magnetic coupling of fluid elements. The validity of standard dynamo theory is discussed, in the context of this powerful instability. MHD dynamos are considered in connection with disc turbulence generated by the magnetorotational instability. An accretion disc model is then presented, with a large-scale, dynamo generated magnetic field of quadrupolar symmetry, including the determination of the radial and vertical disc structures. Turbulence plays a dual role of contributing to the α-effect in the dynamo and in partly driving the disc inflow via the outward viscous transport of angular momentum.


  1. Balbus, S.A., Hawley, J.F., 1991, ApJ, 376, 214.ADSCrossRefGoogle Scholar
  2. Balbus, S.A., Hawley, J.F., 1998, RvMP, 70, 1.ADSGoogle Scholar
  3. Beckwith, K., Armitage, P.J., Simon, J.B., 2011, MNRAS, 416, 361.ADSGoogle Scholar
  4. Blackman, E.G., 2010, AN, 331, 101.ADSGoogle Scholar
  5. Blackman, E.G., Field, G.B., 2004, PhP1, 11, 3264.Google Scholar
  6. Blandford, R.D., Payne, D.G., 1982, MNRAS, 199, 883.ADSCrossRefGoogle Scholar
  7. Brandenburg, A., Campbell, C.G., 1997, in Accretion Disks-New Aspects, Springer.Google Scholar
  8. Brandenburg, A., Donner, K.J., 1997, MNRAS, 288, L29.ADSCrossRefGoogle Scholar
  9. Brandenburg, A., Nordlund, A., Stein, R.F., Torkelsson, U., 1995, ApJ, 446, 741.ADSCrossRefGoogle Scholar
  10. Brandenburg, A., Nordlund, A., Stein, R.F., Torkelsson, U., 1996, ApJ, 458, L45.ADSCrossRefGoogle Scholar
  11. Campbell, C.G., 1992, GAFD, 63, 197.CrossRefGoogle Scholar
  12. Campbell, C.G., 2003, MNRAS, 345, 1110.ADSCrossRefGoogle Scholar
  13. Campbell, C.G., Caunt, S., 1999, MNRAS, 306, 122.ADSCrossRefGoogle Scholar
  14. Chandrasekhar, S., 1960, PNAS.,46, 253.Google Scholar
  15. Chandrasekhar, S., 1961, Hydrodynamic and Hydromagnetic Stability, Oxford University Press.zbMATHGoogle Scholar
  16. Coroniti, F.V., 1981, ApJ, 244, 587.ADSCrossRefGoogle Scholar
  17. Davis, S.W., Stone, J.M., Pessah, M.E., 2010, ApJ, 713, 52.ADSCrossRefGoogle Scholar
  18. Dubrulle, B., Knoblock, E., 1993, A&A, 274, 667.ADSGoogle Scholar
  19. Eardley, D.M., Lightman, A.P., 1975, ApJ, 200, 187.ADSCrossRefGoogle Scholar
  20. Fromang, S., Papaloizou, J.C.B., Lesur, G., Heinemann, T., 2007, A&A, 476, 1123.ADSCrossRefGoogle Scholar
  21. Galeev, A.A., Rosner, R., Vaiana, G.S., 1979, ApJ, 229, 318.ADSCrossRefGoogle Scholar
  22. Gammie, C.F., Balbus, S.A., 1994, MNRAS, 270, 138.ADSCrossRefGoogle Scholar
  23. Gressel, O, 2010, MNRAS, 405, 41.ADSCrossRefGoogle Scholar
  24. Gressel, O., Pessah, M.E., 2015, ApJ, 810, 59.ADSCrossRefGoogle Scholar
  25. Hawley, J.F., Balbus, S.A., 1991, ApJ, 376, 223.ADSCrossRefGoogle Scholar
  26. Hawley, J.F., Balbus, S.A., 1992, ApJ, 400, 595.ADSCrossRefGoogle Scholar
  27. Hawley, J.F., Gammie, C.F., Balbus, S.A., 1995, ApJ, 440, 742.ADSCrossRefGoogle Scholar
  28. Ichimaru, S., 1977, ApJ, 214, 840.ADSCrossRefGoogle Scholar
  29. Lynden-Bell, D., 1969, Nature, 223, 690.ADSCrossRefGoogle Scholar
  30. Moffatt, H.K., 1978, Magnetic Field Generation in Electrically Conducting Fluids, Cambridge University Press.Google Scholar
  31. Nordlund, A., Stein, R.F., 1990, CoPhC, 59, 119.ADSGoogle Scholar
  32. Ogilvie, G.I., 2003, MNRAS, 340, 969.ADSCrossRefGoogle Scholar
  33. Papaloizou, J.C.B., Szuszkiewicz, E., 1992, GAFD, 66, 223.CrossRefGoogle Scholar
  34. Parker, E.N., 1971, ApJ, 163, 255.ADSCrossRefGoogle Scholar
  35. Parker, E.N., 1972, ApJ, 174, 499.ADSCrossRefGoogle Scholar
  36. Pudritz, R.E., 1981, MNRAS, 195, 897.ADSCrossRefGoogle Scholar
  37. Rudiger, G., Shalybkov, D.A., 2002, A&A, 393, L81.ADSCrossRefGoogle Scholar
  38. Rudiger, G., Elstner, D., Stepinski, T.F., 1995, A&A, 298, 934.ADSGoogle Scholar
  39. Shakura, N.I., Sunyaev, R.A., 1973, A&A, 24, 337.ADSGoogle Scholar
  40. Soward, A.M., 1992a, GAFD, 64, 163.CrossRefGoogle Scholar
  41. Soward, A.M., 1992b, GAFD, 64, 201.CrossRefGoogle Scholar
  42. Stella, L., Rosner, R., 1984, ApJ, 277, 312.ADSCrossRefGoogle Scholar
  43. Stepinski, T.F., Levy, E.H., 1990, ApJ, 362, 318.ADSCrossRefGoogle Scholar
  44. Stone, J.M., Hawley, J.F., Gammie, C.F., Balbus, S.A., 1996, ApJ, 463, 656.ADSCrossRefGoogle Scholar
  45. Tout, C.A., Pringle, J.E., 1992, MNRAS, 259, 604.ADSCrossRefGoogle Scholar
  46. Velikhov, E.P., 1959, Sov JETP, 36, 995.MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • C. G. Campbell
    • 1
  1. 1.School of Mathematics, Statistics and PhysicsNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations