Imaging in Patellofemoral Pain

  • Vivek Kalia
  • Douglas N. Mintz


Anatomic function of the patellofemoral compartment requires congruency and synergy of its osseous and soft tissue components. At different degrees of flexion, various components provide the main stabilizing force protecting against lateral patellar maltracking. Knowing the anatomy allows for a better understanding of patterns of injury seen on imaging (e.g., lateral trochlear bone contusion seen with transient lateral patellar dislocations). Anatomic variants can predispose to particular pathologies and outcomes, and some of these variants can be associated with pain (e.g., trochlear dysplasia), while others are typically not (e.g., bipartite patella).

When imaging the patellofemoral joint, a radiographic series is the best initial examination to evaluate the osseous structures and their relationships and to form an impression of what soft tissue injuries may be present given secondary findings. Axial radiographic views allow for evaluation of patellar alignment, position, and joint space, while MRI offers excellent visualization of soft tissue and cartilage.

Specific causes of patellofemoral pain can be broadly split into three categories: (1) acute trauma, (2) overuse injuries ± anatomic issues, and (3) arthritis, all of which can be evaluated with imaging. Some causes of patellofemoral pain, such as fat pad impingement syndrome, patellofemoral overload syndrome, and chondral/osteochondral abnormalities, are best imaged with MRI. Others, such as patellofemoral osteoarthritis and chronic overuse injuries like Osgood-Schlatter syndrome and Sinding-Larsen-Johansson syndrome, are evaluated on radiographs. Advanced cartilage imaging techniques such as T1 rho mapping, T2 mapping, and dGEMRIC (delayed gadolinium-enhanced magnetic resonance imaging of cartilage) can evaluate cartilage ultrastructure.


Patellofemoral pain Anterior knee pain Patellofemoral joint replacement MRI CT X-ray Cartilage imaging 


  1. 1.
    Antinolfi P, Bartoli M, Placella G, et al. Acute patellofemoral instability in children and adolescents. Joints. 2016;4(1):47–51.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Askenberger M, Janarv PM, Finnbogason T, et al. Morphology and anatomic patellar instability risk factors in first-time traumatic lateral patellar dislocations: a prospective magnetic resonance imaging study in skeletally immature children. Am J Sports Med. 2017;45(1):50–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Black BR, Chong le R, Potter HG. Cartilage imaging in sports medicine. Sports Med Arthrosc. 2009;17(1):68–80.PubMedCrossRefGoogle Scholar
  4. 4.
    Boutin RD, Januario JA, Newberg AH. MR imaging features of osteochondritis dissecans of the femoral sulcus. AJR Am J Roentgenol. 2003;180(3):641–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Caton J, Deschamps G, Chambat P. Patella infera. Apropos of 128 cases. Rev Chir Orthop Reparatrice Appar Mot. 1982;68(5):317–25.PubMedGoogle Scholar
  6. 6.
    Chiang H, Liao CJ, Hsieh CH. Clinical feasibility of a novel biphasic osteochondral composite for matrix-associated autologous chondrocyte implantation. Osteoarthr Cartil. 2013;21(4):589–98.PubMedCrossRefGoogle Scholar
  7. 7.
    Choi YS, Cohen NA, Potter HG. Magnetic resonance imaging in the evaluation of osteochondritis dissecans of the patella. Skelet Radiol. 2007;36(10):929–35.CrossRefGoogle Scholar
  8. 8.
    Crema MD, Roemer FW, Marra MD. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics. 2011;31(1):37–61.PubMedCrossRefGoogle Scholar
  9. 9.
    Davies AP, Vince AS, Shepstone L, et al. The radiologic prevalence of patellofemoral osteoarthritis. Clin Orthop Relat Res. 2002;402:206–12.CrossRefGoogle Scholar
  10. 10.
    Dejour H, Walch G, Neyret P, et al. Dysplasia of the femoral trochlea. Rev Chir Orthop Reparatrice Appar Mot. 1990;76:45–54.PubMedGoogle Scholar
  11. 11.
    Dejour H, Walch G, Nove-Josserand L, et al. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2(1):19–26.PubMedCrossRefGoogle Scholar
  12. 12.
    Dejour D, Reynaud P, Lecoultre B. Douleurs et instabilite rotulienne: Essai de classification. Med Hyg. 1998;56:1466–71.Google Scholar
  13. 13.
    Dejour D, Saggin P. The sulcus deepening trochleoplasty—the Lyon’s procedure. Int Orthop. 2010;34(2):311–6.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    De Smet AA, Fisher DR, Graf BK, et al. Osteochondritis dissecans of the knee: value of MR imaging in determining lesion stability and the presence of articular cartilage defects. AJR Am J Roentgenol. 1990;155:549–53.PubMedCrossRefGoogle Scholar
  15. 15.
    De Smet AA, Ilahi OA, Graf BK. Reassessment of the MR criteria for stability of osteochondritis dissecans in the knee and ankle. Skelet Radiol. 1996;25:159–63.CrossRefGoogle Scholar
  16. 16.
    Dunn TC, Lu Y, Jin H, Ries MD, et al. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology. 2004;232(2):592–8.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Eagle S, Potter HG, Koff MF. Morphologic and quantitative magnetic resonance imaging of knee articular cartilage for the assessment of post-traumatic osteoarthritis. J Orthop Res. 2016;35(3):412–23.PubMedCrossRefGoogle Scholar
  18. 18.
    Endo Y, Shubin Stein BE, Potter HG. Radiologic assessment of patellofemoral pain in the athlete. Sports Health. 2011;3:195–210.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Faletti C, De Stefano N, Giudice G, et al. Knee impingement syndromes. Eur J Radiol. 1998;27(Suppl 1):S60–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Grawe B, Shubin Stein B. Tibial tubercle osteotomy: indication and techniques. J Knee Surg. 2015;28(4):279–84.PubMedCrossRefGoogle Scholar
  21. 21.
    Grelsamer RP, Proctor CS, Bazos AN. Evaluation of patellar shape in the sagittal plane. A clinical analysis. Am J Sports Med. 1994;22:61.PubMedCrossRefGoogle Scholar
  22. 22.
    Gustas CN, Blankenbaker DG, Rio AM, et al. Evaluation of the articular cartilage of the knee joint using an isotropic resolution 3D fast spin-echo sequence with conventional and radial reformatted images. AJR Am J Roentgenol. 2015;205:371–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Heyse TJ, Figiel J, Hähnlein U, Timmesfeld N, Lakemeier S, Schofer MD, Fuchs-Winkelmann S, Efe T. MRI after patellofemoral replacement: the preserved compartments. Eur J Radiol. 2012;81(9):2313–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Hong E, Kraft MC. Evaluating anterior knee pain. Med Clin N Am. 2014;98:697–717.PubMedCrossRefGoogle Scholar
  25. 25.
    Hunter DJ, Guermazi A, Lo GH, et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI osteoarthritis knee score). Osteoarthr Cartil. 2011;19(8):990–1002.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Insall J, Salvati E. Patella position in the normal knee joint. Radiology. 1971;101:101–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Kavanagh EC, Zoga A, Omar I, et al. MRI findings in bipartite patella. Skelet Radiol. 2007;36:209–14.CrossRefGoogle Scholar
  28. 28.
    Kijowski R, Blankenbaker DG, Shinki K, et al. Juvenile versus adult osteochondritis dissecans of the knee: appropriate MR imaging criteria for instability. Radiology. 2008;248(2):571–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Kim T-H, Sobti A, Lee S-H, et al. The effects of weight-bearing conditions on patellofemoral indices in individuals without and with patellofemoral pain syndrome. Skelet Radiol. 2014;43(2):157–64.CrossRefGoogle Scholar
  30. 30.
    LaPrade RF, Cram TR, James EW, et al. Trochlear dysplasia and the role of trochleoplasty. Clin Sports Med. 2014;33(3):531–45.PubMedCrossRefGoogle Scholar
  31. 31.
    Laurin CA, Dussault R, Levesque HP. The tangential x-ray investigation of the patellofemoral joint: x-ray technique, diagnostic criteria and their interpretation. Clin Orthop Relat Res. 1979;144:16–26.Google Scholar
  32. 32.
    Li X, Benjamin Ma C, Link TM. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthr Cartil. 2007;15(7):789–97.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Matzat SJ, van Tiel J, Gold GE, et al. Quantitative MRI techniques of cartilage composition. Quant Imaging Med Surg. 2013;3(3):162–74.PubMedPubMedCentralGoogle Scholar
  34. 34.
    McAlindon TE, Snow S, Cooper C, et al. Radiographic patterns of osteoarthritis of the knee joint in the community: the importance of the patellofemoral joint. Ann Rheum Dis. 1992;51(7):844–9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    McIlvain GE, Lavender CD, Boukhemis KW. Bilateral Osteochondritis Dissecans in a 16-year-old female basketball player. Int J Athl Ther Train. 2013;18(4):23–7.CrossRefGoogle Scholar
  36. 36.
    Merchant AC, Mercer RL, Jacobsen RH, et al. Roentgenographic analysis of patellofemoral congruence. J Bone Joint Surg Am. 1974;56:1391–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Obedian RS, Grelsamer RP. Osteochondritis dissecans of the distal femur and patella. Clin Sports Med. 1997;16:157–74.PubMedCrossRefGoogle Scholar
  38. 38.
    Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br. 1961;43-B:752–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Pakin SK, Xu J, Schweitzer ME, Regatte RR. Rapid 3D-T1rho mapping of the knee joint at 3.0 T with parallel imaging. Magn Reson Med. 2006;56(3):563–71.PubMedCrossRefGoogle Scholar
  40. 40.
    Pavlov H. Orthopaedist's guide to plain film imaging. New York: Thieme Publishers; 1999.Google Scholar
  41. 41.
    Peterfy CG, Guermazi A, Zaim S, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil. 2004;12(3):177–90.PubMedCrossRefGoogle Scholar
  42. 42.
    Peters TA, McLean ID. Osteochondritis dissecans of the patellofemoral joint. Am J Sports Med. 2000;28:63–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Pfirrmann CW, Zanetti M, Romero J, et al. Femoral trochlear dysplasia: MR findings. Radiology. 2000;216(3):858–64.PubMedCrossRefGoogle Scholar
  44. 44.
    Potter HG, Linklater JM, Allen AA, et al. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am. 1998;80:1276–84.PubMedCrossRefGoogle Scholar
  45. 45.
    Reider B, Marshall JL, Koslin B, et al. The anterior aspect of the knee joint. J Bone Joint Surg Am. 1981;63:351–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Saddik D, McNally EG, Richardson M. MRI of Hoffa’s fat pad. Skelet Radiol. 2004;33(8):433–44.CrossRefGoogle Scholar
  47. 47.
    Samim M, Smitaman E, Lawrence D. MRI of anterior knee pain. Skelet Radiol. 2014;43(7):875–93.CrossRefGoogle Scholar
  48. 48.
    Schwaiger BJ, Gersing AS, Mbapte Wamba J, et al. Can signal abnormalities detected with MR imaging in knee articular cartilage be used to predict development of morphologic cartilage defects? 48-month data from the osteoarthritis initiative. Radiology. 2016;281(1):158–67.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Sherman SL, Plackis AC, Nuelle CW. Patellofemoral anatomy and biomechanics. Clin Sports Med. 2014;33(3):389–401.PubMedCrossRefGoogle Scholar
  50. 50.
    Shindle MK, Foo LF, Kelly BT, et al. Magnetic resonance imaging of cartilage in the athlete: current techniques and spectrum of disease. J Bone Joint Surg Am. 2006;88(Suppl 4):27–46.PubMedGoogle Scholar
  51. 51.
    Stefanik JJ, Gross KD, Guermazi A, et al. The relation of MRI-detected structural damage in the medial and lateral patellofemoral joint to knee pain: the multicenter and Framingham osteoarthritis studies. Osteoarthr Cartil. 2015;23(4):565–70.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Stefanik JJ, Guermazi A, Roemer FW, et al. Changes in patellofemoral and tibiofemoral joint cartilage damage and bone marrow lesions over 7 years: the multicenter osteoarthritis study. Osteoarthr Cartil. 2016;424(7):1160–6.CrossRefGoogle Scholar
  53. 53.
    Stephen JM, Urquhart DW, van Arkel RJ, et al. The use of Sonographically guided botulinum toxin type a (Dysport) injections into the tensor fasciae Latae for the treatment of lateral Patellofemoral overload syndrome. Am J Sports Med. 2016;44(5):1195–202.PubMedCrossRefGoogle Scholar
  54. 54.
    van de Loo AA, Arntz OJ, Otterness IG, et al. Proteoglycan loss and subsequent replenishment in articular cartilage after a mild arthritic insult by IL-1 in mice: impaired proteoglycan turnover in the recovery phase. Agents Actions. 1994;41:200–8.PubMedCrossRefGoogle Scholar
  55. 55.
    van der Heijden RA, de Kanter JL, Bierma-Zeinstra SM, et al. Structural abnormalities on magnetic resonance imaging in patients with Patellofemoral pain: a cross-sectional case-control study. Am J Sports Med. 2016;44(9):2339–46.PubMedCrossRefGoogle Scholar
  56. 56.
    Wang L, Chang G, Xu J, et al. T1rho MRI of menisci and cartilage in patients with osteoarthritis at 3T. Eur J Radiol. 2012;81(9):2329–36.PubMedCrossRefGoogle Scholar
  57. 57.
    Wheaton AJ, Dodge GR, Borthakur A, et al. Detection of changes in articular cartilage proteoglycan by T(1rho) magnetic resonance imaging. J Orthop Res. 2005;23(1):102–8.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    White BJ, Sherman OH. Patellofemoral instability. Bull NYU Hosp Jt Dis. 2009;67(1):22–9.PubMedGoogle Scholar
  59. 59.
    Wiberg G. Roentgenographic and anatomic studies on the femoropatellar joint. Acta Orthop Scand. 1941;12:319–410.CrossRefGoogle Scholar
  60. 60.
    Williams A, Gillis A, McKenzie C. Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. AJR Am J Roentgenol. 2004;182(1):167–72.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vivek Kalia
    • 1
  • Douglas N. Mintz
    • 1
  1. 1.Hospital for Special SurgeryNew YorkUSA

Personalised recommendations