Advertisement

An Active Efficient Coding Model of Binocular Vision Development Under Normal and Abnormal Rearing Conditions

  • Lukas KlimmaschEmail author
  • Johann Schneider
  • Alexander Lelais
  • Bertram E. Shi
  • Jochen Triesch
Conference paper
  • 501 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10994)

Abstract

The development of binocular vision encompasses the formation of binocular receptive fields tuned to different disparities and the calibration of accurate vergence eye movements. Experiments have shown that this development is impaired when the animal is exposed to certain abnormal rearing conditions such as growing up in an environment that is deprived of horizontal or vertical edges. Here we test the effect of abnormal rearing conditions on a recently proposed computational model of binocular development. The model is formulated in the Active Efficient Coding framework, a generalization of classic efficient coding ideas to active perception. We show that abnormal rearing conditions lead to differences in the model’s development that qualitatively match those seen in animal experiments. Furthermore, the model predicts systematic changes in vergence accuracy due to abnormal rearing. We discuss implications of the model for the treatment of developmental disorders of binocular vision such as amblyopia and strabismus.

Keywords

Receptive field development Sparse coding Abnormal rearing condition Active efficient coding Stereopsis Vergence 

Notes

Acknowledgements

This work was supported by the German Federal Ministry of Education and Research under Grants 01GQ1414 and 01EW1603A, the European Union’s Horizon 2020 Grant 713010, the Hong Kong Research Grants Council under Grant 16244416, and the Quandt Foundation.

References

  1. 1.
    Barlow, H.B.: Possible principles underlying the transformations of sensory messages. Sensory Communication (1961)Google Scholar
  2. 2.
    Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: A strategy employed by v1? Vision. Res. 37(23), 3311–3325 (1997)CrossRefGoogle Scholar
  3. 3.
    Zhao, Y., Rothkopf, C.A., Triesch, J., Shi, B.E.: A unified model of the joint development of disparity selectivity and vergence control. In: IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL), pp. 1–6 (2012)Google Scholar
  4. 4.
    Teulière, C., Forestier, S., Lonini, L., Zhang, C., Zhao, Y., Shi, B.E., Triesch, J.: Self-calibrating smooth pursuit through active efficient coding. Robot. Auton. Syst. 71, 3–12 (2015)CrossRefGoogle Scholar
  5. 5.
    Lonini, L., Zhao, Y., Chandrashekhariah, P., Shi, B.E., Triesch, J.: Autonomous learning of active multi-scale binocular vision. In: IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL), pp. 1–6 (2013)Google Scholar
  6. 6.
    Zhang, C., Triesch, J., Shi, B.E.: An active-efficient-coding model of optokinetic nystagmus. J. Vision 16(14), 10–10 (2016)CrossRefGoogle Scholar
  7. 7.
    Triesch, J., Eckmann, S., Shi, B.E.: A computational model for the joint development of accommodation and vergence control. J. Vision 17(10), 162–162 (2017)CrossRefGoogle Scholar
  8. 8.
    Vikram, T., Teulière, C., Zhang, C., Shi, B.E., Triesch, J.: Autonomous learning of smooth pursuit and vergence through active efficient coding. In: IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL) (2014)Google Scholar
  9. 9.
    Chandrapala, T.N., Shi, B.E., Triesch, J.: On the utility of sparse neural representations in adaptive behaving agents. In: International Joint Conference on Neural Networks (IJCNN) (2015)Google Scholar
  10. 10.
    Lonini, L., Forestier, S., Teulière, C., Zhao, Y., Shi, B.E., Triesch, J.: Robust active binocular vision through intrinsically motivated learning. Front. Neurorobotics 7, 20–20 (2013)CrossRefGoogle Scholar
  11. 11.
    Freeman, R., Pettigrew, J.: Alteration of visual cortex from environmental asymmetries. J. Nature 246, 359–360 (1973)CrossRefGoogle Scholar
  12. 12.
    Tanaka, S., Ribot, J., Imamura, K., Tani, T.: Orientation-restricted continuous visual exposure induces marked reorganization of orientation maps in early life. Neuroimage 30, 462477 (2006)CrossRefGoogle Scholar
  13. 13.
    Tanaka, S., Tani, T., Ribot, J., OHashi, K., Imamura, K.: A postnatal critical period for orientation plasticity in the cat visual cortex. PLoS ONE 4, e5380 (2009)CrossRefGoogle Scholar
  14. 14.
    Hirsch, H.V.B., Spinelli, D.N.: Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science 168, 869–871 (1970)CrossRefGoogle Scholar
  15. 15.
    Wiesel, T.N., Hubel, D.H.: Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 10031017 (1963)Google Scholar
  16. 16.
    Hunt, J.J., Dayan, P., Goodhill, G.J.: Sparse coding can predict primary visual cortex receptive field changes induced by abnormal visual input. PLoS Comput. Biol. 9(5), e1003005 (2013)CrossRefGoogle Scholar
  17. 17.
    Klimmasch, L., Lelais, A., Lichtenstein, A., Shi, B.E., Triesch, J.: Learning of active binocular vision in a biomechanical model of the oculomotor system. bioRxiv 160721 (2017).  https://doi.org/10.1101/160721
  18. 18.
    Priamikov, A., Fronius, M., Shi, B.E., Triesch, J.: OpenEyeSim: a biomechanical model for simulation of closed-loop visual perception. J. Vision 16(15), 25–25 (2016)CrossRefGoogle Scholar
  19. 19.
    Olmos, A., Kingdom, F.A.: A biologically inspired algorithm for the recovery of shading and reflectance images. Perception 33(12), 1463–1473 (2004)CrossRefGoogle Scholar
  20. 20.
    Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41, 3397–3415 (1993)CrossRefGoogle Scholar
  21. 21.
    Albert, M.V., Schnabel, A., Field, D.J.: Innate visual learning through spontaneous activity patterns. PLoS Comput. Biol. 4(8), e1000137 (2008)CrossRefGoogle Scholar
  22. 22.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)Google Scholar
  23. 23.
    Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge (2005)Google Scholar
  24. 24.
    Van Hasselt, H., Wiering, M.A.: Reinforcement learning in continuous action spaces. In: IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning, pp. 272–279 (2007)Google Scholar
  25. 25.
    Chandrapala, T.N., Shi, B.E., Triesch, J.: Active maintenance of binocular correspondence leads to orientation alignment of visual receptive fields. In: Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL), pp. 98–103 (2015)Google Scholar
  26. 26.
    Appelle, S.: Perception and discrimination as a function of stimulus orientation: the “oblique effect” in man and animals. Psychol. Bull. 78(4), 266–278 (1972)CrossRefGoogle Scholar
  27. 27.
    Priamikov, A., Narayan, V., Shi, B.E., Triesch, J.: The role of contrast sensitivity in the development of binocular vision: A computational study. In: Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL), pp. 33–38 (2015)Google Scholar
  28. 28.
    Leventhal, A.G., Hirsch, H.V.: Cortical effect of early selective exposure to diagonal lines. Science 190(4217), S.902–S.904 (1975)CrossRefGoogle Scholar
  29. 29.
    Stryker, M.P., Sherk, H., Leventhal, A.G., Hirsch, H.V.: Physiological consequences for the cat’s visual cortex of effectively restricting early visual experience with oriented contours. J. Neurophysiology 41(4), 896–909 (1978)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Lukas Klimmasch
    • 1
    Email author
  • Johann Schneider
    • 1
  • Alexander Lelais
    • 1
  • Bertram E. Shi
    • 2
  • Jochen Triesch
    • 1
  1. 1.Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
  2. 2.Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations