Advertisement

Nuclear Equation of State for Compact Stars and Supernovae

  • G. Fiorella Burgio
  • Anthea F. FantinaEmail author
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 457)

Abstract

The equation of state (EoS) of hot and dense matter is a fundamental input to describe static and dynamical properties of neutron stars, core-collapse supernovae and binary compact-star mergers. We review the current status of the EoS for compact objects, that have been studied with both ab-initio many-body approaches and phenomenological models. We limit ourselves to the description of EoSs with purely nucleonic degrees of freedom, disregarding the appearance of strange baryonic matter and/or quark matter. We compare the theoretical predictions with different data coming from both nuclear physics experiments and astrophysical observations. Combining the complementary information thus obtained greatly enriches our insight into the dense nuclear matter properties. Current challenges in the description of the EoS are also discussed, mainly focusing on the model dependence of the constraints extracted from either experimental or observational data, the lack of a consistent and rigorous many-body treatment at zero and finite temperature of the matter encountered in compact stars (e.g. problem of cluster formation and extension of the EoS to very high temperatures), the role of nucleonic three-body forces, and the dependence of the direct URCA processes on the EoS.

Notes

Acknowledgements

This work has been partially supported by the COST action MP1304 “NewCompStar”. The authors would like to thank Ad. R. Raduta for providing Fig. 6.4, H. J. Schulze for providing Fig. 6.1, M. Baldo for providing us with data for Fig. 6.2 and for valuable comments on the manuscript, N. Chamel and S. Goriely for fruitful discussions and providing us with data for Figs. 6.3, 6.5, and 6.6, C. Providência for data for Figs. 6.3 and 6.5, F. Gulminelli for valuable comments on the manuscript, and X. Roca Maza for insightful discussions.

References

  1. Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., et al.: Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848, L13 (2017a). https://doi.org/10.3847/2041-8213/aa920c ADSCrossRefGoogle Scholar
  2. Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., et al.: GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119(16), 161101 (2017b).  https://doi.org/10.1103/PhysRevLett.119.161101 ADSCrossRefGoogle Scholar
  3. Abdo, A.A., Wood, K.S., DeCesar, M.E., Gargano, F., Giordano, F., Ray, P.S., Parent, D., Harding, A.K., Miller, M.C., Wood, D.L., Wolff, M.T.: PSR J0007+7303 in the CTA1 supernova remnant: new gamma-ray results from two years of fermi large area telescope observations. Astrophys. J. 744, 146 (2012). https://doi.org/10.1088/0004-637X/744/2/146 ADSCrossRefGoogle Scholar
  4. Agrawal, B.K., De, J.N., Samaddar, S.K., Centelles, M., Viñas, X.: Symmetry energy of warm nuclear systems. Eur. Phys. J. A 50, 19 (2014).  https://doi.org/10.1140/epja/i2014-14019-8 ADSCrossRefGoogle Scholar
  5. Akmal, A., Pandharipande, V.R., Ravenhall, D.G.: Equation of state of nucleon matter and neutron star structure. Phys. Rev. C 58, 1804–1828 (1998). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.58.1804 ADSCrossRefGoogle Scholar
  6. Angeli, I., Marinova, K.P.: Table of experimental nuclear ground state charge radii: an update. At. Data Nucl. Data Tables 99, 69–95 (2013). https://doi.org/10.1016/j.adt.2011.12.006 ADSCrossRefGoogle Scholar
  7. Antić, S., Typel, S.: Neutron star equations of state with optical potential constraint. Nucl. Phys. A 938, 92–108 (2015). https://doi.org/10.1016/j.nuclphysa.2015.03.004 ADSCrossRefGoogle Scholar
  8. Antoniadis, J., Freire, P.C.C., Wex, N., Tauris, T.M., Lynch, R.S., van Kerkwijk, M.H., Kramer, M., Bassa, C., Dhillon, V.S., Driebe, T., Hessels, J.W.T., Kaspi, V.M., Kondratiev, V.I., Langer, N., Marsh, T.R., McLaughlin, M.A., Pennucci, T.T., Ransom, S.M., Stairs, I.H., van Leeuwen, J., Verbiest, J.P.W., Whelan, D.G.: A massive pulsar in a compact relativistic binary. Science 340, 1233232 (2013).  https://doi.org/10.1126/science.1233232 CrossRefGoogle Scholar
  9. Aoki, S., Doi, T., Hatsuda, T., Ikeda, Y., Inoue, T., Ishii, N., Murano, K., Nemura, H., Sasaki, K., HAL QCD Collaboration: Lattice quantum chromodynamical approach to nuclear physics. Prog. Theor. Exp. Phys. 2012(1), 01A105 (2012).  https://doi.org/10.1093/ptep/pts010 Google Scholar
  10. Audi, G., Wapstra, A.H., Thibault, C.: The Ame2003 atomic mass evaluation (II). Tables, graphs and references. Nucl. Phys. A 729, 337–676 (2003). https://doi.org/10.1016/j.nuclphysa.2003.11.003 ADSCrossRefGoogle Scholar
  11. Avancini, S.S., Chiacchiera, S., Menezes, D.P., Providência, C.: Warm “pasta” phase in the Thomas-Fermi approximation. Phys. Rev. C 82(5), 055807 (2010).  https://doi.org/10.1103/PhysRevC.82.055807 ADSCrossRefGoogle Scholar
  12. Avancini, S.S., Barros Jr., C.C., Brito, L., Chiacchiera, S., Menezes, D.P., Providência, C.: Light clusters in nuclear matter and the “pasta” phase. Phys. Rev. C 85(3), 035806 (2012).  https://doi.org/10.1103/PhysRevC.85.035806 ADSCrossRefGoogle Scholar
  13. Aymard, F., Gulminelli, F., Margueron, J.: In-medium nuclear cluster energies within the extended Thomas-Fermi approach. Phys. Rev. C 89(6), 065807 (2014).  https://doi.org/10.1103/PhysRevC.89.065807 ADSCrossRefGoogle Scholar
  14. Baiotti, L., Rezzolla, L.: Binary neutron star mergers: a review of Einstein’s richest laboratory. Rep. Prog. Phys. 80(9), 096901 (2017). https://doi.org/10.1088/1361-6633/aa67bb ADSMathSciNetCrossRefGoogle Scholar
  15. Balberg, S., Gal, A.: An effective equation of state for dense matter with strangeness. Nucl. Phys. A 625, 435–472 (1997). https://doi.org/10.1016/S0375-9474(97)81465-0 ADSCrossRefGoogle Scholar
  16. Baldo, M. (ed.): Nuclear Methods and The Nuclear Equation of State. World Scientific, Singapore (1999). https://doi.org/10.1142/2657 Google Scholar
  17. Baldo, M., Burgio, G.F.: Properties of the nuclear medium. Rep. Prog. Phys. 75(2), 026301 (2012). https://doi.org/10.1088/0034-4885/75/2/026301 ADSCrossRefGoogle Scholar
  18. Baldo, M., Burgio, G.F.: The nuclear symmetry energy. Prog. Part. Nucl. Phys. 91, 203–258 (2016). https://doi.org/10.1016/j.ppnp.2016.06.006 ADSCrossRefGoogle Scholar
  19. Baldo, M., Ferreira, L.S.: Nuclear liquid-gas phase transition. Phys. Rev. C 59, 682–703 (1999).  https://doi.org/10.1103/PhysRevC.59.682 ADSCrossRefGoogle Scholar
  20. Baldo, M., Fukukawa, K.: Nuclear matter from effective quark-quark interaction. Phys. Rev. Lett. 113(24), 242501 (2014).  https://doi.org/10.1103/PhysRevLett.113.242501 ADSCrossRefGoogle Scholar
  21. Baldo, M., Maieron, C.: Equation of state of nuclear matter at high baryon density. J. Phys. G: Nucl. Part. Phys. 34, R243 (2007). https://doi.org/10.1088/0954-3899/34/5/R01 CrossRefGoogle Scholar
  22. Baldo, M., Bombaci, I., Burgio, G.F.: Microscopic nuclear equation of state with three-body forces and neutron star structure. Astron. Astrophys. 328, 274–282 (1997)ADSGoogle Scholar
  23. Baldo, M., Burgio, G.F., Schulze, H.J.: Hyperon stars in the Brueckner-Bethe-Goldstone theory. Phys. Rev. C 61(5), 055801 (2000).  https://doi.org/10.1103/PhysRevC.61.055801 ADSCrossRefGoogle Scholar
  24. Baldo, M., Saperstein, E.E., Tolokonnikov, S.V.: A realistic model of superfluidity in the neutron star inner crust. Eur. Phys. J. A 32, 97–108 (2007).  https://doi.org/10.1140/epja/i2006-10356-5 ADSCrossRefGoogle Scholar
  25. Baldo, M., Robledo, L., Schuck, P., Viñas, X.: Energy density functional on a microscopic basis. J. Phys. G: Nucl. Part. Phys. 37(6), 064015 (2010). https://doi.org/10.1088/0954-3899/37/6/064015 ADSCrossRefGoogle Scholar
  26. Baldo, M., Robledo, L.M., Schuck, P., Viñas, X.: New Kohn-Sham density functional based on microscopic nuclear and neutron matter equations of state. Phys. Rev. C 87(6), 064305 (2013).  https://doi.org/10.1103/PhysRevC.87.064305 ADSCrossRefGoogle Scholar
  27. Banik, S.: Probing the metastability of a protoneutron star with hyperons in a core-collapse supernova. Phys. Rev. C 89(3), 035807 (2014).  https://doi.org/10.1103/PhysRevC.89.035807 ADSCrossRefGoogle Scholar
  28. Banik, S., Hempel, M., Bandyopadhyay, D.: New hyperon equations of state for supernovae and neutron stars in density-dependent hadron field theory. Astrophys. J. Suppl. Ser. 214, 22 (2014). https://doi.org/10.1088/0067-0049/214/2/22 ADSCrossRefGoogle Scholar
  29. Bauböck, M., Psaltis, D., Özel, F.: Narrow atomic features from rapidly spinning neutron stars. Astrophys. J. 766, 87 (2013). https://doi.org/10.1088/0004-637X/766/2/87 ADSCrossRefGoogle Scholar
  30. Bauswein, A., Stergioulas, N.: Unified picture of the post-merger dynamics and gravitational wave emission in neutron star mergers. Phys. Rev. D 91(12), 124056 (2015).  https://doi.org/10.1103/PhysRevD.91.124056 ADSCrossRefGoogle Scholar
  31. Bauswein, A., Janka, H.T., Hebeler, K., Schwenk, A.: Equation-of-state dependence of the gravitational-wave signal from the ring-down phase of neutron-star mergers. Phys. Rev. D 86(6), 063001 (2012).  https://doi.org/10.1103/PhysRevD.86.063001 ADSCrossRefGoogle Scholar
  32. Bauswein, A., Goriely, S., Janka, H.T.: Systematics of dynamical mass ejection, nucleosynthesis, and radioactively powered electromagnetic signals from neutron-star mergers. Astrophys. J. 773, 78 (2013). https://doi.org/10.1088/0004-637X/773/1/78 ADSCrossRefGoogle Scholar
  33. Bauswein, A., Stergioulas, N., Janka, H.T.: Revealing the high-density equation of state through binary neutron star mergers. Phys. Rev. D 90(2), 023002 (2014).  https://doi.org/10.1103/PhysRevD.90.023002 ADSCrossRefGoogle Scholar
  34. Bauswein, A., Stergioulas, N., Janka, H.T.: Exploring properties of high-density matter through remnants of neutron-star mergers. Eur. Phys. J. A 52, 56 (2016).  https://doi.org/10.1140/epja/i2016-16056-7 ADSCrossRefGoogle Scholar
  35. Baym, G.: Self-consistent approximations in many-body systems. Phys. Rev. 127, 1391–1401 (1962).  https://doi.org/10.1103/PhysRev.127.1391 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. Baym, G., Bethe, H.A., Pethick, C.J.: Neutron star matter. Nucl. Phys. A 175, 225–271 (1971a). https://doi.org/10.1016/0375-9474(71)90281-8 ADSCrossRefGoogle Scholar
  37. Baym, G., Pethick, C., Sutherland, P.: The ground state of matter at high densities: equation of state and stellar models. Astrophys. J. 170, 299 (1971b). https://doi.org/10.1086/151216 ADSCrossRefGoogle Scholar
  38. Beane, S.R., Detmold, W., Orginos, K., Savage, M.J.: Nuclear physics from lattice QCD. Prog. Part. Nucl. Phys. 66, 1–40 (2011). https://doi.org/10.1016/j.ppnp.2010.08.002 ADSCrossRefGoogle Scholar
  39. Bedaque, P.F., Rupak, G.: Dilute resonating gases and the third virial coefficient. Phys. Rev. B 67(17), 174513 (2003).  https://doi.org/10.1103/PhysRevB.67.174513 ADSCrossRefGoogle Scholar
  40. Bejger, M., Haensel, P.: Accelerated expansion of the Crab Nebula and evaluation of its neutron-star parameters. Astron. Astrophys. 405, 747–751 (2003). https://doi.org/10.1051/0004-6361:20030642 ADSCrossRefGoogle Scholar
  41. Bejger, M., Haensel, P., Zdunik, J.L.: Rotation at 1122 Hz and the neutron star structure. Astron. Astrophys. 464, L49–L52 (2007). https://doi.org/10.1051/0004-6361:20066902 ADSCrossRefGoogle Scholar
  42. Bender, M., Heenen, P.H., Reinhard, P.G.: Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121–180 (2003).  https://doi.org/10.1103/RevModPhys.75.121 ADSCrossRefGoogle Scholar
  43. Bender, M., Bennaceur, K., Duguet, T., Heenen, P.H., Lesinski, T., Meyer, J.: Tensor part of the Skyrme energy density functional. II. Deformation properties of magic and semi-magic nuclei. Phys. Rev. C 80(6), 064302 (2009).  https://doi.org/10.1103/PhysRevC.80.064302 Google Scholar
  44. Beth, E., Uhlenbeck, G.E.: The quantum theory of the non-ideal gas. II. Behaviour at low temperatures. Physica 4, 915–924 (1937). https://doi.org/10.1016/S0031-8914(37)80189-5 ADSzbMATHCrossRefGoogle Scholar
  45. Bethe, H.A.: Supernova mechanisms. Rev. Mod. Phys. 62, 801–866 (1990).  https://doi.org/10.1103/RevModPhys.62.801 ADSCrossRefGoogle Scholar
  46. Binder, S., Langhammer, J., Calci, A., Roth, R.: Ab initio path to heavy nuclei. Phys. Lett. B 736, 119–123 (2014). http://dx.doi.org/10.1016/j.physletb.2014.07.010; http://www.sciencedirect.com/science/article/pii/S0370269314004961 ADSCrossRefGoogle Scholar
  47. Blaizot, J.P.: Nuclear compressibilities. Phys. Rep. 64, 171–248 (1980). https://doi.org/10.1016/0370-1573(80)90001-0 ADSMathSciNetCrossRefGoogle Scholar
  48. Blaschke, D., Grigorian, H., Voskresensky, D.N., Weber, F.: Cooling of the neutron star in Cassiopeia A. Phys. Rev. C 85(2), 022802 (2012).  https://doi.org/10.1103/PhysRevC.85.022802 ADSCrossRefGoogle Scholar
  49. Blaschke, D., Grigorian, H., Voskresensky, D.N.: Nuclear medium cooling scenario in light of new Cas A cooling data and the 2M pulsar mass measurements. Phys. Rev. C 88(6), 065805 (2013).  https://doi.org/10.1103/PhysRevC.88.065805 ADSCrossRefGoogle Scholar
  50. Blinnikov, S.I., Panov, I.V., Rudzsky, M.A., Sumiyoshi, K.: The equation of state and composition of hot, dense matter in core-collapse supernovae. Astron. Astrophys. 535, A37 (2011). https://doi.org/10.1051/0004-6361/201117225 ADSCrossRefGoogle Scholar
  51. Bloch, C., De Dominicis, C.: Un développement du potentiel de gibbs d’un système quantique composé d’un grand nombre de particules. Nucl. Phys. 7, 459–479 (1958). https://doi.org/10.1016/0029-5582(58)90285-2 ADSzbMATHCrossRefGoogle Scholar
  52. Bloch, C., De Dominicis, C.: Un développement du potentiel de Gibbs d’un système composé d’un grand nombre de particules (II). Nucl. Phys. 10, 181–196 (1959a). https://doi.org/10.1016/0029-5582(59)90203-2 ADSzbMATHCrossRefGoogle Scholar
  53. Bloch, C., De Dominicis, C.: Un développement du potentiel de Gibbs d’un système quantique composé d’un grand nombre de particules III: La contribution des collisions binaires. Nucl. Phys. 10, 509–526 (1959b). https://doi.org/10.1016/0029-5582(59)90241-X zbMATHCrossRefGoogle Scholar
  54. Bogdanov, S.: Constraining the state of ultra-dense matter with the neutron star interior composition explorer. In: AAS/High Energy Astrophysics Division, vol. 15, p. 105.05 (2016a)ADSGoogle Scholar
  55. Bogdanov, S.: Prospects for neutron star equation of state constraints using “recycled” millisecond pulsars. Eur. Phys. J. A 52, 37 (2016b).  https://doi.org/10.1140/epja/i2016-16037-x ADSCrossRefGoogle Scholar
  56. Bogner, S.K., Schwenk, A., Furnstahl, R.J., Nogga, A.: Is nuclear matter perturbative with low-momentum interactions? Nucl. Phys. A 763, 59–79 (2005). https://doi.org/10.1016/j.nuclphysa.2005.08.024 ADSCrossRefGoogle Scholar
  57. Bogner, S.K., Furnstahl, R.J., Schwenk, A.: From low-momentum interactions to nuclear structure. Prog. Part. Nucl. Phys. 65, 94–147 (2010). https://doi.org/10.1016/j.ppnp.2010.03.001 ADSCrossRefGoogle Scholar
  58. Boguta, J., Bodmer, A.R.: Relativistic calculation of nuclear matter and the nuclear surface. Nucl. Phys. A 292, 413–428 (1977). https://doi.org/10.1016/0375-9474(77)90626-1 ADSMathSciNetCrossRefGoogle Scholar
  59. Bonche, P., Vautherin, D.: Mean-field calculations of the equation of state of supernova matter II. Astron. Astrophys. 112, 268–272 (1982)ADSGoogle Scholar
  60. Borderie, B., Rivet, M.F.: Nuclear multifragmentation and phase transition for hot nuclei. Prog. Part. Nucl. Phys. 61, 551–601 (2008). https://doi.org/10.1016/j.ppnp.2008.01.003 ADSCrossRefGoogle Scholar
  61. Bose, S., Chakravarti, K., Rezzolla, L., Sathyaprakash, B.S., Takami, K.: Neutron-star radius from a population of binary neutron star mergers. Phys. Rev. Lett. 120(3), 031102 (2018).  https://doi.org/10.1103/PhysRevLett.120.031102 ADSCrossRefGoogle Scholar
  62. Botvina, A.S., Mishustin, I.N.: Statistical approach for supernova matter. Nucl. Phys. A 843(1), 98–132 (2010). http://dx.doi.org/10.1016/j.nuclphysa.2010.05.052; http://www.sciencedirect.com/science/article/pii/S0375947410005099 ADSCrossRefGoogle Scholar
  63. Brack, M., Quentin, P.: Selfconsistent calculations of highly excited nuclei. Phys. Lett. B 52, 159–162 (1974). https://doi.org/10.1016/0370-2693(74)90077-X ADSCrossRefGoogle Scholar
  64. Brack, M., Guet, C., Håkansson, H.B.: Selfconsistent semiclassical description of average nuclear properties−a link between microscopic and macroscopic models. Phys. Rep. 123, 275–364 (1985). https://doi.org/10.1016/0370-1573(86)90078-5 ADSCrossRefGoogle Scholar
  65. Brink, D., Broglia, R.: Nuclear Superfluidity: Pairing in Finite Systems. Cambridge University Press, Cambridge (2005)zbMATHCrossRefGoogle Scholar
  66. Brockmann, R., Machleidt, R.: Relativistic nuclear structure. I. Nuclear matter. Phys. Rev. C 42, 1965–1980 (1990).  https://doi.org/10.1103/PhysRevC.42.1965 CrossRefGoogle Scholar
  67. Brown, G.E., Weise, W., Baym, G., Speth, J.: Relativistic effects in nuclear physics. Comment. Nucl. Part. Phys. 17, 39–62 (1987)Google Scholar
  68. Burrows, A.: Colloquium: perspectives on core-collapse supernova theory. Rev. Mod. Phys. 85, 245–261 (2013).  https://doi.org/10.1103/RevModPhys.85.245 ADSCrossRefGoogle Scholar
  69. Burrows, A., Lattimer, J.M.: On the accuracy of the single-nucleus approximation in the equation of state of hot, dense matter. Astrophys. J. 285, 294–303 (1984). https://doi.org/10.1086/162505 ADSCrossRefGoogle Scholar
  70. Bürvenich, T., Madland, D.G., Maruhn, J.A., Reinhard, P.G.: Nuclear ground state observables and QCD scaling in a refined relativistic point coupling model. Phys. Rev. C 65(4), 044308 (2002).  https://doi.org/10.1103/PhysRevC.65.044308 ADSCrossRefGoogle Scholar
  71. Buyukcizmeci, N., Botvina, A.S., Mishustin, I.N., Ogul, R., Hempel, M., Schaffner-Bielich, J., Thielemann, F.K., Furusawa, S., Sumiyoshi, K., Yamada, S., Suzuki, H.: A comparative study of statistical models for nuclear equation of state of stellar matter. Nucl. Phys. A 907, 13–54 (2013). https://doi.org/10.1016/j.nuclphysa.2013.03.010 ADSCrossRefGoogle Scholar
  72. Buyukcizmeci, N., Botvina, A.S., Mishustin, I.N.: Tabulated equation of state for supernova matter including full nuclear ensemble. Astrophys. J. 789, 33 (2014). https://doi.org/10.1088/0004-637X/789/1/33 ADSCrossRefGoogle Scholar
  73. Cao, L.G., Colò, G., Sagawa, H.: Spin and spin-isospin instabilities and Landau parameters of Skyrme interactions with tensor correlations. Phys. Rev. C 81(4), 044302 (2010).  https://doi.org/10.1103/PhysRevC.81.044302 ADSCrossRefGoogle Scholar
  74. Caplan, M.E., Schneider, A.S., Horowitz, C.J., Berry, D.K.: Pasta nucleosynthesis: molecular dynamics simulations of nuclear statistical equilibrium. Phys. Rev. C 91(6), 065802 (2015).  https://doi.org/10.1103/PhysRevC.91.065802 ADSCrossRefGoogle Scholar
  75. Carbone, A., Cipollone, A., Barbieri, C., Rios, A., Polls, A.: Self-consistent Green’s functions formalism with three-body interactions. Phys. Rev. C 88(5), 054326 (2013a).  https://doi.org/10.1103/PhysRevC.88.054326 ADSCrossRefGoogle Scholar
  76. Carbone, A., Polls, A., Rios, A.: Symmetric nuclear matter with chiral three-nucleon forces in the self-consistent Green’s functions approach. Phys. Rev. C 88(4), 044302 (2013b).  https://doi.org/10.1103/PhysRevC.88.044302 ADSCrossRefGoogle Scholar
  77. Carlson, J., Pandharipande, V.R., Wiringa, R.B.: Three-nucleon interaction in 3-, 4- and -body systems. Nucl. Phys. A 401, 59–85 (1983). https://doi.org/10.1016/0375-9474(83)90336-6 ADSCrossRefGoogle Scholar
  78. Carlson, J., Morales, J., Pandharipande, V.R., Ravenhall, D.G.: Quantum Monte Carlo calculations of neutron matter. Phys. Rev. C 68(2), 025802 (2003).  https://doi.org/10.1103/PhysRevC.68.025802 ADSCrossRefGoogle Scholar
  79. Carlson, J., Gandolfi, S., Gezerlis, A.: Quantum Monte Carlo approaches to nuclear and atomic physics. Prog. Theor. Exp. Phys. 2012(1), 01A209 (2012).  https://doi.org/10.1093/ptep/pts031
  80. Carlson, J., Gandolfi, S., Pederiva, F., Pieper, S.C., Schiavilla, R., Schmidt, K.E., Wiringa, R.B.: Quantum Monte Carlo methods for nuclear physics. Rev. Mod. Phys. 87, 1067–1118 (2015).  https://doi.org/10.1103/RevModPhys.87.1067 ADSMathSciNetCrossRefGoogle Scholar
  81. Cavagnoli, R., Menezes, D.P., Providência, C.: Neutron star properties and the symmetry energy. Phys. Rev. C 84(6), 065810 (2011).  https://doi.org/10.1103/PhysRevC.84.065810 ADSCrossRefGoogle Scholar
  82. Chabanat, E., Bonche, P., Haensel, P., Meyer, J., Schaeffer, R.: A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities. Nucl. Phys. A 635, 231–256 (1998). https://doi.org/10.1016/S0375-9474(98)00180-8 ADSCrossRefGoogle Scholar
  83. Chamel, N.: Self-interaction errors in nuclear energy density functionals. Phys. Rev. C 82(6), 061307 (2010).  https://doi.org/10.1103/PhysRevC.82.061307 ADSCrossRefGoogle Scholar
  84. Chamel, N., Fantina, A.F.: Electron exchange and polarization effects on electron captures and neutron emissions by nuclei in white dwarfs and neutron stars. Phys. Rev. D 93(6), 063001 (2016).  https://doi.org/10.1103/PhysRevD.93.063001 ADSCrossRefGoogle Scholar
  85. Chamel, N., Goriely, S.: Spin and spin-isospin instabilities in asymmetric nuclear matter at zero and finite temperatures using Skyrme functionals. Phys. Rev. C 82(4), 045804 (2010).  https://doi.org/10.1103/PhysRevC.82.045804 ADSCrossRefGoogle Scholar
  86. Chamel, N., Haensel, P.: Physics of neutron star crusts. Living Rev. Relativ. 11, 10 (2008).  https://doi.org/10.12942/lrr-2008-10 ADSzbMATHCrossRefGoogle Scholar
  87. Chamel, N., Naimi, S., Khan, E., Margueron, J.: Validity of the Wigner-Seitz approximation in neutron star crust. Phys. Rev. C 75(5), 055806 (2007).  https://doi.org/10.1103/PhysRevC.75.055806 ADSCrossRefGoogle Scholar
  88. Chamel, N., Goriely, S., Pearson, J.M.: Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XI. Stabilizing neutron stars against a ferromagnetic collapse. Phys. Rev. C 80(6), 065804 (2009).  https://doi.org/10.1103/PhysRevC.80.065804 Google Scholar
  89. Chamel, N., Fantina, A.F., Pearson, J.M., Goriely, S.: Phase transitions in dense matter and the maximum mass of neutron stars. Astron. Astrophys. 553, A22 (2013a). https://doi.org/10.1051/0004-6361/201220986 ADSCrossRefGoogle Scholar
  90. Chamel, N., Haensel, P., Zdunik, J.L., Fantina, A.F.: Erratum: on the maximum mass of neutron stars. Int. J. Mod. Phys. E 22(11), 1392004 (2013b). https://doi.org/10.1142/S0218301313920043; http://www.worldscientific.com/doi/abs/10.1142/S0218301313920043 ADSCrossRefGoogle Scholar
  91. Chamel, N., Haensel, P., Zdunik, J.L., Fantina, A.F.: On the maximum mass of neutron stars. Int. J. Mod. Phys. E 22, 1330018 (2013c). https://doi.org/10.1142/S021830131330018X ADSCrossRefGoogle Scholar
  92. Chamel, N., Pearson, J.M., Fantina, A.F., Ducoin, C., Goriely, S., Pastore, A.: Brussels–Montreal nuclear energy density functionals, from atomic masses to neutron stars. Acta Phys. Pol. B 46, 349 (2015).  https://doi.org/10.5506/APhysPolB.46.349 ADSCrossRefGoogle Scholar
  93. Char, P., Banik, S., Bandyopadhyay, D.: A comparative study of hyperon equations of state in supernova simulations. Astrophys. J. 809, 116 (2015). https://doi.org/10.1088/0004-637X/809/2/116 ADSCrossRefGoogle Scholar
  94. Chen, L.W., Ko, C.M., Li, B.A., Xu, J.: Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei. Phys. Rev. C 82(2), 024321 (2010).  https://doi.org/10.1103/PhysRevC.82.024321 ADSCrossRefGoogle Scholar
  95. Cheng, K.S., Yao, C.C., Dai, Z.G.: Properties of nuclei in the inner crusts of neutron stars in the relativistic mean-field theory. Phys. Rev. C 55, 2092–2100 (1997).  https://doi.org/10.1103/PhysRevC.55.2092 ADSCrossRefGoogle Scholar
  96. Cipollone, A., Barbieri, C., Navrátil, P.: Isotopic chains around oxygen from evolved chiral two- and three-nucleon interactions. Phys. Rev. Lett. 111(6), 062501 (2013).  https://doi.org/10.1103/PhysRevLett.111.062501 ADSCrossRefGoogle Scholar
  97. Cipollone, A., Barbieri, C., Navrátil, P.: Chiral three-nucleon forces and the evolution of correlations along the oxygen isotopic chain. Phys. Rev. C 92(1), 014306 (2015).  https://doi.org/10.1103/PhysRevC.92.014306 ADSCrossRefGoogle Scholar
  98. Coester, F.: Bound states of a many-particle system. Nucl. Phys. 7, 421–424 (1958). https://doi.org/10.1016/0029-5582(58)90280-3 ADSCrossRefGoogle Scholar
  99. Coester, F., Kümmel, H.: Short-range correlations in nuclear wave functions. Nucl. Phys. 17, 477–485 (1960). https://doi.org/10.1016/0029-5582(60)90140-1 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  100. Colò, G., van Giai, N., Meyer, J., Bennaceur, K., Bonche, P.: Microscopic determination of the nuclear incompressibility within the nonrelativistic framework. Phys. Rev. C 70(2), 024307 (2004).  https://doi.org/10.1103/PhysRevC.70.024307 ADSCrossRefGoogle Scholar
  101. Constantinou, C., Muccioli, B., Prakash, M., Lattimer, J.M.: Thermal properties of supernova matter: the bulk homogeneous phase. Phys. Rev. C 89(6), 065802 (2014).  https://doi.org/10.1103/PhysRevC.89.065802 ADSCrossRefGoogle Scholar
  102. Constantinou, C., Muccioli, B., Prakash, M., Lattimer, J.M.: Thermal properties of hot and dense matter with finite range interactions. Phys. Rev. C 92(2), 025801 (2015).  https://doi.org/10.1103/PhysRevC.92.025801 ADSzbMATHCrossRefGoogle Scholar
  103. Cooper, L.N.: Bound electron pairs in a degenerate fermi gas. Phys. Rev. 104, 1189–1190 (1956).  https://doi.org/10.1103/PhysRev.104.1189 ADSzbMATHCrossRefGoogle Scholar
  104. Coraggio, L., Holt, J.W., Itaco, N., Machleidt, R., Marcucci, L.E., Sammarruca, F.: Nuclear-matter equation of state with consistent two- and three-body perturbative chiral interactions. Phys. Rev. C 89(4), 044321 (2014).  https://doi.org/10.1103/PhysRevC.89.044321 ADSCrossRefGoogle Scholar
  105. Cottam, J., Paerels, F., Mendez, M.: Gravitationally redshifted absorption lines in the X-ray burst spectra of a neutron star. Nature 420, 51–54 (2002).  https://doi.org/10.1038/nature01159 ADSCrossRefGoogle Scholar
  106. Cottam, J., Paerels, F., Méndez, M., Boirin, L., Lewin, W.H.G., Kuulkers, E., Miller, J.M.: The burst spectra of EXO 0748-676 during a long 2003 XMM-Newton observation. Astrophys. J. 672, 504–509 (2008). https://doi.org/10.1086/524186 ADSCrossRefGoogle Scholar
  107. Danielewicz, P., Lacey, R., Lynch, W.G.: Determination of the equation of state of dense matter. Science 298, 1592–1596 (2002).  https://doi.org/10.1126/science.1078070 ADSCrossRefGoogle Scholar
  108. Danielewicz, P., Lee, J.: Symmetry energy II: isobaric analog states. Nucl. Phys. A 922, 1–70 (2014). https://doi.org/10.1016/j.nuclphysa.2013.11.005 ADSCrossRefGoogle Scholar
  109. Daoutidis, I., Goriely, S.: Impact of the nuclear symmetry energy on the pygmy dipole resonance. Phys. Rev. C 84(2), 027301 (2011).  https://doi.org/10.1103/PhysRevC.84.027301 ADSCrossRefGoogle Scholar
  110. Davesne, D., Navarro, J., Becker, P., Jodon, R., Meyer, J., Pastore, A.: Extended Skyrme pseudopotential deduced from infinite nuclear matter properties. Phys. Rev. C 91(6), 064303 (2015).  https://doi.org/10.1103/PhysRevC.91.064303 ADSCrossRefGoogle Scholar
  111. Dean, D.J., Langanke, K., Sampaio, J.M.: Temperature dependence of the symmetry energy. Phys. Rev. C 66(4), 045802 (2002).  https://doi.org/10.1103/PhysRevC.66.045802 ADSCrossRefGoogle Scholar
  112. Dechargé, J., Gogny, D.: Hartree-Fock-Bogolyubov calculations with the D 1 effective interaction on spherical nuclei. Phys. Rev. C 21, 1568–1593 (1980).  https://doi.org/10.1103/PhysRevC.21.1568 ADSCrossRefGoogle Scholar
  113. Demorest, P.B., Pennucci, T., Ransom, S.M., Roberts, M.S.E., Hessels, J.W.T.: A two-solar-mass neutron star measured using Shapiro delay. Nature 467, 1081–1083 (2010).  https://doi.org/10.1038/nature09466 ADSCrossRefGoogle Scholar
  114. Dewulf, Y., Dickhoff, W.H., van Neck, D., Stoddard, E.R., Waroquier, M.: Saturation of nuclear matter and short-range correlations. Phys. Rev. Lett. 90(15), 152501 (2003).  https://doi.org/10.1103/PhysRevLett.90.152501 ADSCrossRefGoogle Scholar
  115. Dickhoff, W.H., Barbieri, C.: Self-consistent Green’s function method for nuclei and nuclear matter. Prog. Part. Nucl. Phys. 52, 377–496 (2004). https://doi.org/10.1016/j.ppnp.2004.02.038 ADSCrossRefGoogle Scholar
  116. Dickhoff, W.H., Van Neck, D.: Many-Body Theory Exposed! Propagator Description of Quantum Mechanics in Many-Body Systems, 2nd edn. World Scientific, Singapore (2008). https://doi.org/10.1142/6821
  117. Dobaczewski, J., Flocard, H., Treiner, J.: Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line. Nucl. Phys. A 422, 103–139 (1984). https://doi.org/10.1016/0375-9474(84)90433-0 ADSCrossRefGoogle Scholar
  118. Doleschall, P., Borbély, I., Papp, Z., Plessas, W.: Nonlocality in the nucleon-nucleon interaction and three-nucleon bound states. Phys. Rev. C 67(6), 064005 (2003).  https://doi.org/10.1103/PhysRevC.67.064005 ADSCrossRefGoogle Scholar
  119. Donati, P., Pizzochero, P.M., Bortignon, P.F., Broglia, R.A.: Temperature dependence of the nucleon effective mass and the physics of stellar collapse. Phys. Rev. Lett. 72, 2835–2838 (1994).  https://doi.org/10.1103/PhysRevLett.72.2835 ADSCrossRefGoogle Scholar
  120. Dorso, C.O., Giménez Molinelli, P.A., López, J.A.: Topological characterization of neutron star crusts. Phys. Rev. C 86(5), 055805 (2012).  https://doi.org/10.1103/PhysRevC.86.055805 ADSCrossRefGoogle Scholar
  121. Douchin, F., Haensel, P.: Inner edge of neutron-star crust with SLy effective nucleon-nucleon interactions. Phys. Lett. B 485, 107–114 (2000). https://doi.org/10.1016/S0370-2693(00)00672-9 ADSCrossRefGoogle Scholar
  122. Douchin, F., Haensel, P.: A unified equation of state of dense matter and neutron star structure. Astron. Astrophys. 380, 151–167 (2001). https://doi.org/10.1051/0004-6361:20011402 ADSCrossRefGoogle Scholar
  123. Drago, A., Tambini, U.: Finite temperature quark matter and supernova explosion. J. Phys. G: Nucl. Part. Phys. 25, 971–979 (1999). https://doi.org/10.1088/0954-3899/25/5/302 ADSCrossRefGoogle Scholar
  124. Drischler, C., Hebeler, K., Schwenk, A.: Asymmetric nuclear matter based on chiral two- and three-nucleon interactions. Phys. Rev. C 93(5), 054314 (2016).  https://doi.org/10.1103/PhysRevC.93.054314 ADSCrossRefGoogle Scholar
  125. Duguet, T.: The nuclear energy density functional formalism. In: Scheidenberger, C., Pfützner, M. (eds.) The Euroschool on Exotic Beams, Volume IV. Lecture Notes in Physics, vol. 879, p. 293. Springer, Berlin (2014). https://doi.org/10.1007/978-3-642-45141-6_7 Google Scholar
  126. Dutra, M., Lourenço, O., Sá Martins, J.S., Delfino, A., Stone, J.R., Stevenson, P.D.: Skyrme interaction and nuclear matter constraints. Phys. Rev. C 85(3), 035201 (2012).  https://doi.org/10.1103/PhysRevC.85.035201 ADSCrossRefGoogle Scholar
  127. Dutra, M., Lourenço, O., Avancini, S.S., Carlson, B.V., Delfino, A., Menezes, D.P., Providência, C., Typel, S., Stone, J.R.: Relativistic mean-field hadronic models under nuclear matter constraints. Phys. Rev. C 90(5), 055203 (2014).  https://doi.org/10.1103/PhysRevC.90.055203 ADSCrossRefGoogle Scholar
  128. Dutra, M., Lourenço, O., Menezes, D.P.: Erratum: stellar properties and nuclear matter constraints [Phys. Rev. C93, 025806 (2016)]. Phys. Rev. C 94(4), 049901 (2016a).  https://doi.org/10.1103/PhysRevC.94.049901
  129. Dutra, M., Lourenço, O., Menezes, D.P.: Stellar properties and nuclear matter constraints. Phys. Rev. C 93(2), 025806 (2016b).  https://doi.org/10.1103/PhysRevC.93.025806 ADSCrossRefGoogle Scholar
  130. El Eid, M.F., Hillebrandt, W.: A new equation of state of supernova matter. Astron. Astrophys., Suppl. Ser. 42, 215–226 (1980)Google Scholar
  131. Elshamouty, K.G., Heinke, C.O., Sivakoff, G.R., Ho, W.C.G., Shternin, P.S., Yakovlev, D.G., Patnaude, D.J., David, L.: Measuring the cooling of the neutron star in cassiopeia a with all chandra X-ray observatory detectors. Astrophys. J. 777, 22 (2013). https://doi.org/10.1088/0004-637X/777/1/22 ADSCrossRefGoogle Scholar
  132. Entem, D.R., Machleidt, R.: Accurate nucleon-nucleon potential based upon chiral perturbation theory. Phys. Lett. B 524, 93–98 (2002). https://doi.org/10.1016/S0370-2693(01)01363-6 ADSCrossRefGoogle Scholar
  133. Entem, D.R., Machleidt, R.: Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 68(4), 041001 (2003).  https://doi.org/10.1103/PhysRevC.68.041001 ADSCrossRefGoogle Scholar
  134. Epelbaum, E., Hammer, H.W., Meißner, U.G.: Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773–1825 (2009).  https://doi.org/10.1103/RevModPhys.81.1773 ADSCrossRefGoogle Scholar
  135. Faber, J.A., Rasio, F.A.: Binary neutron star mergers. Living Rev. Relativ. 15, 8 (2012).  https://doi.org/10.12942/lrr-2012-8 ADSCrossRefGoogle Scholar
  136. Fan, Y.Z., Wu, X.F., Wei, D.M.: Signature of gravitational wave radiation in afterglows of short gamma-ray bursts? Phys. Rev. D 88(6), 067304 (2013).  https://doi.org/10.1103/PhysRevD.88.067304 ADSCrossRefGoogle Scholar
  137. Fantina, A.F., Margueron, J., Donati, P., Pizzochero, P.M.: Nuclear energy functional with a surface-peaked effective mass: global properties. J. Phys. G: Nucl. Part. Phys. 38(2), 025101 (2011). https://doi.org/10.1088/0954-3899/38/2/025101 ADSCrossRefGoogle Scholar
  138. Fantina, A.F., Blottiau, P., Margueron, J., Mellor, P., Pizzochero, P.M.: Effects of the temperature dependence of the in-medium nucleon mass on core-collapse supernovae. Astron. Astrophys. 541, A30 (2012a). https://doi.org/10.1051/0004-6361/201118187 ADSCrossRefGoogle Scholar
  139. Fantina, A.F., Chamel, N., Pearson, J.M., Goriely, S.: Unified equation of state for neutron stars and supernova cores using the nuclear energy-density functional theory. J. Phys. Conf. Ser. 342, 012003 (2012b). https://doi.org/10.1088/1742-6596/342/1/012003 CrossRefGoogle Scholar
  140. Fantina, A.F., Chamel, N., Pearson, J.M., Goriely, S.: Neutron star properties with unified equations of state of dense matter. Astron. Astrophys. 559, A128 (2013). https://doi.org/10.1051/0004-6361/201321884 ADSCrossRefGoogle Scholar
  141. Fantoni, S., Fabrocini, A.: Correlated basis function theory for fermion systems. In: Navarro, J., Polls, A. (eds.) Microscopic Quantum Many-Body Theories and Their Applications. Lecture Notes in Physics, vol. 510, p. 119. Springer, Berlin (1998).  https://doi.org/10.1007/BFb0104526 Google Scholar
  142. Fantoni, S., Rosati, S.: The hypernetted-chain approximation for a fermion system. Nuovo Cim. A 25, 593–615 (1975). https://doi.org/10.1007/BF02729302 ADSMathSciNetCrossRefGoogle Scholar
  143. Fattoyev, F.J., Horowitz, C.J., Piekarewicz, J., Shen, G.: Relativistic effective interaction for nuclei, giant resonances, and neutron stars. Phys. Rev. C 82(5), 055803 (2010).  https://doi.org/10.1103/PhysRevC.82.055803 ADSCrossRefGoogle Scholar
  144. Fayans, S.A., Tolokonnikov, S.V., Trykov, E.L., Zawischa, D.: Nuclear isotope shifts within the local energy-density functional approach. Nucl. Phys. A 676, 49–119 (2000). https://doi.org/10.1016/S0375-9474(00)00192-5 ADSCrossRefGoogle Scholar
  145. Fayans, S.A., Zawischa, D.: Local energy-density functional approach to many-body nuclear systems with S-wave pairing. Int. J. Mod. Phys. B 15, 1684–1702 (2001). https://doi.org/10.1142/S0217979201006203 ADSCrossRefGoogle Scholar
  146. Fedoseew, A., Lenske, H.: Thermal properties of asymmetric nuclear matter. Phys. Rev. C 91(3), 034307 (2015).  https://doi.org/10.1103/PhysRevC.91.034307 ADSCrossRefGoogle Scholar
  147. Ferdman, R.D., Stairs, I.H., Kramer, M., Janssen, G.H., Bassa, C.G., Stappers, B.W., Demorest, P.B., Cognard, I., Desvignes, G., Theureau, G., Burgay, M., Lyne, A.G., Manchester, R.N., Possenti, A.: PSR J1756-2251: a pulsar with a low-mass neutron star companion. Mon. Not. R. Astron. Soc. 443, 2183–2196 (2014).  https://doi.org/10.1093/mnras/stu1223 ADSCrossRefGoogle Scholar
  148. Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. International Series in Pure and Applied Physics. McGraw-Hill, San Francisco (1971)Google Scholar
  149. Finelli, P., Kaiser, N., Vretenar, D., Weise, W.: Nuclear many-body dynamics constrained by QCD and chiral symmetry. Eur. Phys. J. A 17, 573–578 (2003).  https://doi.org/10.1140/epja/i2003-10004-8 ADSCrossRefGoogle Scholar
  150. Finelli, P., Kaiser, N., Vretenar, D., Weise, W.: Relativistic nuclear model with point-couplings constrained by QCD and chiral symmetry. Nucl. Phys. A 735, 449–481 (2004). https://doi.org/10.1016/j.nuclphysa.2004.02.001 ADSCrossRefGoogle Scholar
  151. Finelli, P., Kaiser, N., Vretenar, D., Weise, W.: Relativistic nuclear energy density functional constrained by low-energy QCD. Nucl. Phys. A 770, 1–31 (2006). https://doi.org/10.1016/j.nuclphysa.2006.02.007 ADSCrossRefGoogle Scholar
  152. Fischer, T., Whitehouse, S.C., Mezzacappa, A., Thielemann, F.K., Liebendörfer, M.: The neutrino signal from protoneutron star accretion and black hole formation. Astron. Astrophys. 499, 1–15 (2009). https://doi.org/10.1051/0004-6361/200811055 ADSCrossRefGoogle Scholar
  153. Fischer, T., Sagert, I., Pagliara, G., Hempel, M., Schaffner-Bielich, J., Rauscher, T., Thielemann, F.K., Käppeli, R., Martínez-Pinedo, G., Liebendörfer, M.: Core-collapse supernova explosions triggered by a quark-hadron phase transition during the early post-bounce phase. Astrophys. J. Suppl. Ser. 194, 39 (2011). https://doi.org/10.1088/0067-0049/194/2/39 ADSCrossRefGoogle Scholar
  154. Fischer, T., Klähn, T., Sagert, I., Hempel, M., Blaschke, D.: Quark Matter in Core Collpase Supernova Simulations. Acta Phys. Pol. B Proc. Suppl. 7, 153 (2014a).  https://doi.org/10.5506/APhysPolBSupp.7.153 CrossRefGoogle Scholar
  155. Fischer, T., Hempel, M., Sagert, I., Suwa, Y., Schaffner-Bielich, J.: Symmetry energy impact in simulations of core-collapse supernovae. Eur. Phys. J. A 50, 46 (2014b).  https://doi.org/10.1140/epja/i2014-14046-5 ADSCrossRefGoogle Scholar
  156. Fonseca, E., Pennucci, T.T., Ellis, J.A., Stairs, I.H., Nice, D.J., Ransom, S.M., Demorest, P.B., Arzoumanian, Z., Crowter, K., Dolch, T., Ferdman, R.D., Gonzalez, M.E., Jones, G., Jones, M.L., Lam, M.T., Levin, L., McLaughlin, M.A., Stovall, K., Swiggum, J.K., Zhu, W.: The NANOGrav nine-year data set: mass and geometric measurements of binary millisecond pulsars. Astrophys. J. 832, 167 (2016). https://doi.org/10.3847/0004-637X/832/2/167 ADSCrossRefGoogle Scholar
  157. Fortin, M., Zdunik, J.L., Haensel, P., Bejger, M.: Neutron stars with hyperon cores: stellar radii and equation of state near nuclear density. Astron. Astrophys. 576, A68 (2015). https://doi.org/10.1051/0004-6361/201424800 ADSCrossRefGoogle Scholar
  158. Fortin, M., Providência, C., Raduta, A.R., Gulminelli, F., Zdunik, J.L., Haensel, P., Bejger, M.: Neutron star radii and crusts: uncertainties and unified equations of state. Phys. Rev. C 94(3), 035804 (2016).  https://doi.org/10.1103/PhysRevC.94.035804 ADSCrossRefGoogle Scholar
  159. Frick, T.: Self-consistent Green’s function in nuclear matter at finite temperature. Ph.D.thesis, Universitaet Tuebingen (2004)Google Scholar
  160. Friedman, B., Pandharipande, V.R.: Hot and cold, nuclear and neutron matter. Nucl. Phys. A 361, 502–520 (1981)ADSCrossRefGoogle Scholar
  161. Fryer, C.L., Belczynski, K., Ramirez-Ruiz, E., Rosswog, S., Shen, G., Steiner, A.W.: The fate of the compact remnant in neutron star mergers. Astrophys. J. 812, 24 (2015). https://doi.org/10.1088/0004-637X/812/1/24 ADSCrossRefGoogle Scholar
  162. Fuchs, C.: Kaon production in heavy ion reactions at intermediate energies. Prog. Part. Nucl. Phys. 56, 1–103 (2006). https://doi.org/10.1016/j.ppnp.2005.07.004 ADSCrossRefGoogle Scholar
  163. Fuchs, C., Faessler, A., Zabrodin, E., Zheng, Y.M.: Probing the nuclear equation of state by K+ production in heavy-ion collisions. Phys. Rev. Lett. 86, 1974–1977 (2001).  https://doi.org/10.1103/PhysRevLett.86.1974 ADSCrossRefGoogle Scholar
  164. Fujita, J., Miyazawa, H.: Pion theory of three-body forces. Prog. Theor. Phys. 17, 360–365 (1957).  https://doi.org/10.1143/PTP.17.360 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  165. Fujiwara, Y., Fujita, T., Kohno, M., Nakamoto, C., Suzuki, Y.: Resonating group study of baryon baryon interactions for the complete baryon octet: NN interaction. Phys. Rev. C 65, 014002 (2001).  https://doi.org/10.1103/PhysRevC.65.014002 ADSCrossRefGoogle Scholar
  166. Fujiwara, Y., Suzuki, Y., Nakamoto, C.: Baryon-baryon interactions in the SU(6) quark model and their applications to light nuclear systems. Prog. Part. Nucl. Phys. 58, 439–520 (2007). https://doi.org/10.1016/j.ppnp.2006.08.001 ADSCrossRefGoogle Scholar
  167. Fukukawa, K., Baldo, M., Burgio, G.F., Lo Monaco, L., Schulze, H.J.: Nuclear matter equation of state from a quark-model nucleon-nucleon interaction. Phys. Rev. C 92, 065802 (2015).  https://doi.org/10.1103/PhysRevC.92.065802 ADSCrossRefGoogle Scholar
  168. Furnstahl, R.J., Hebeler, K.: New applications of renormalization group methods in nuclear physics. Rep. Prog. Phys. 76(12), 126301 (2013). https://doi.org/10.1088/0034-4885/76/12/126301 ADSCrossRefGoogle Scholar
  169. Furusawa, S., Yamada, S., Sumiyoshi, K., Suzuki, H.: A new baryonic equation of state at sub-nuclear densities for core-collapse simulations. Astrophys. J. 738, 178 (2011). https://doi.org/10.1088/0004-637X/738/2/178 ADSCrossRefGoogle Scholar
  170. Furusawa, S., Nagakura, H., Sumiyoshi, K., Yamada, S.: The influence of inelastic neutrino reactions with light nuclei on the standing accretion shock instability in core-collapse supernovae. Astrophys. J. 774, 78 (2013a). https://doi.org/10.1088/0004-637X/774/1/78 ADSCrossRefGoogle Scholar
  171. Furusawa, S., Sumiyoshi, K., Yamada, S., Suzuki, H.: New equations of state based on the liquid drop model of heavy nuclei and quantum approach to light nuclei for core-collapse supernova simulations. Astrophys. J. 772, 95 (2013b). https://doi.org/10.1088/0004-637X/772/2/95 ADSCrossRefGoogle Scholar
  172. Furusawa, S., Nagakura, H., Sumiyoshi, K., Kato, C., Yamada, S.: Dependence of weak interaction rates on the nuclear composition during stellar core collapse. Phys. Rev. C 95(2), 025809 (2017a).  https://doi.org/10.1103/PhysRevC.95.025809 ADSCrossRefGoogle Scholar
  173. Furusawa, S., Sumiyoshi, K., Yamada, S., Suzuki, H.: Supernova equations of state including full nuclear ensemble with in-medium effects. Nucl. Phys. A 957, 188–207 (2017b). https://doi.org/10.1016/j.nuclphysa.2016.09.002 ADSCrossRefGoogle Scholar
  174. Gabler, M., Cerdá-Durán, P., Stergioulas, N., Font, J.A., Müller, E.: Imprints of superfluidity on magnetoelastic quasiperiodic oscillations of soft gamma-ray repeaters. Phys. Rev. Lett. 111(21), 211102 (2013).  https://doi.org/10.1103/PhysRevLett.111.211102 ADSCrossRefGoogle Scholar
  175. Galloway, D.K., Lampe, N.: On the consistency of neutron-star radius measurements from thermonuclear bursts. Astrophys. J. 747, 75 (2012). https://doi.org/10.1088/0004-637X/747/1/75 ADSCrossRefGoogle Scholar
  176. Gandolfi, S., Illarionov, A.Y., Schmidt, K.E., Pederiva, F., Fantoni, S.: Quantum Monte Carlo calculation of the equation of state of neutron matter. Phys. Rev. C 79(5), 054005 (2009).  https://doi.org/10.1103/PhysRevC.79.054005 ADSCrossRefGoogle Scholar
  177. Gandolfi, S., Carlson, J., Pieper, S.C.: Cold neutrons trapped in external fields. Phys. Rev. Lett. 106(1), 012501 (2011).  https://doi.org/10.1103/PhysRevLett.106.012501 ADSCrossRefGoogle Scholar
  178. Gandolfi, S., Gezerlis, A., Carlson, J.: Neutron matter from low to high density. Annu. Rev. Nucl. Part. Sci. 65, 303–328 (2015).  https://doi.org/10.1146/annurev-nucl-102014-021957 ADSCrossRefGoogle Scholar
  179. Gentile, N.A., Aufderheide, M.B., Mathews, G.J., Swesty, F.D., Fuller, G.M.: The QCD phase transition and supernova core collapse. Astrophys. J. 414, 701–711 (1993). https://doi.org/10.1086/173116 ADSCrossRefGoogle Scholar
  180. Gezerlis, A., Tews, I., Epelbaum, E., Gandolfi, S., Hebeler, K., Nogga, A., Schwenk, A.: Quantum Monte Carlo calculations with chiral effective field theory interactions. Phys. Rev. Lett. 111(3), 032501 (2013).  https://doi.org/10.1103/PhysRevLett.111.032501 ADSCrossRefGoogle Scholar
  181. Giménez Molinelli, P.A., Dorso, C.O.: Finite size effects in neutron star and nuclear matter simulations. Nucl. Phys. A 933, 306–324 (2015). https://doi.org/10.1016/j.nuclphysa.2014.11.005 ADSCrossRefGoogle Scholar
  182. Gögelein, P., Müther, H.: Nuclear matter in the crust of neutron stars. Phys. Rev. C 76(2), 024312 (2007).  https://doi.org/10.1103/PhysRevC.76.024312 ADSCrossRefGoogle Scholar
  183. Gögelein, P., van Dalen, E.N.E., Fuchs, C., Müther, H.: Nuclear matter in the crust of neutron stars derived from realistic NN interactions. Phys. Rev. C 77(2), 025802 (2008).  https://doi.org/10.1103/PhysRevC.77.025802 ADSCrossRefGoogle Scholar
  184. Gonzalez-Boquera, C., Centelles, M., Viñas, X., Rios, A.: Higher-order symmetry energy and neutron star core-crust transition with Gogny forces. Phys. Rev. C 96(6), 065806 (2017).  https://doi.org/10.1103/PhysRevC.96.065806 ADSCrossRefGoogle Scholar
  185. Goriely, S., Capote, R.: Uncertainties of mass extrapolations in Hartree-Fock-Bogoliubov mass models. Phys. Rev. C 89(5), 054318 (2014).  https://doi.org/10.1103/PhysRevC.89.054318 ADSCrossRefGoogle Scholar
  186. Goriely, S., Hilaire, S., Girod, M., Péru, S.: First Gogny-Hartree-Fock-Bogoliubov nuclear mass model. Phys. Rev. Lett. 102(24), 242501 (2009).  https://doi.org/10.1103/PhysRevLett.102.242501 ADSCrossRefGoogle Scholar
  187. Goriely, S., Chamel, N., Pearson, J.M.: Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XII. Stiffness and stability of neutron-star matter. Phys. Rev. C 82(3), 035804 (2010).  https://doi.org/10.1103/PhysRevC.82.035804 Google Scholar
  188. Goriely, S., Bauswein, A., Janka, H.T.: r-process nucleosynthesis in dynamically ejected matter of neutron star mergers. Astrophys. J. Lett. 738, L32 (2011). https://doi.org/10.1088/2041-8205/738/2/L32 ADSCrossRefGoogle Scholar
  189. Goriely, S., Chamel, N., Pearson, J.M.: Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XIII. The 2012 atomic mass evaluation and the symmetry coefficient. Phys. Rev. C 88(2), 024308 (2013a).  https://doi.org/10.1103/PhysRevC.88.024308
  190. Goriely, S., Chamel, N., Pearson, J.M.: Hartree-Fock-Bogoliubov nuclear mass model with 0.50 MeV accuracy based on standard forms of Skyrme and pairing functionals. Phys. Rev. C 88(6), 061302 (2013b).  https://doi.org/10.1103/PhysRevC.88.061302
  191. Goriely, S., Chamel, N., Pearson, J.M.: Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XVI. Inclusion of self-energy effects in pairing. Phys. Rev. C 93(3), 034337 (2016a).  https://doi.org/10.1103/PhysRevC.93.034337 Google Scholar
  192. Goriely, S., Hilaire, S., Girod, M., Péru, S.: The Gogny-Hartree-Fock-Bogoliubov nuclear-mass model. Eur. Phys. J. A 52, 202 (2016b).  https://doi.org/10.1140/epja/i2016-16202-3 ADSCrossRefGoogle Scholar
  193. Grangé, P., Lejeune, A., Martzolff, M., Mathiot, J.F.: Consistent three-nucleon forces in the nuclear many-body problem. Phys. Rev. C 40, 1040–1060 (1989).  https://doi.org/10.1103/PhysRevC.40.1040 ADSCrossRefGoogle Scholar
  194. Grigorian, H., Voskresensky, D.N., Blaschke, D.: Influence of the stiffness of the equation of state and in-medium effects on the cooling of compact stars. Eur. Phys. J. A 52, 67 (2016).  https://doi.org/10.1140/epja/i2016-16067-4 ADSCrossRefGoogle Scholar
  195. Grill, F., Margueron, J., Sandulescu, N.: Cluster structure of the inner crust of neutron stars in the Hartree-Fock-Bogoliubov approach. Phys. Rev. C 84(6), 065801 (2011).  https://doi.org/10.1103/PhysRevC.84.065801 ADSCrossRefGoogle Scholar
  196. Guillot, S., Servillat, M., Webb, N.A., Rutledge, R.E.: Measurement of the radius of neutron stars with high signal-to-noise quiescent low-mass X-ray binaries in globular clusters. Astrophys. J. 772, 7 (2013). https://doi.org/10.1088/0004-637X/772/1/7 ADSCrossRefGoogle Scholar
  197. Gulminelli, F., Raduta, A.R.: Unified treatment of subsaturation stellar matter at zero and finite temperature. Phys. Rev. C 92(5), 055803 (2015).  https://doi.org/10.1103/PhysRevC.92.055803 ADSCrossRefGoogle Scholar
  198. Gulminelli, F., Raduta, A.R., Oertel, M.: Phase transition toward strange matter. Phys. Rev. C 86(2), 025805 (2012).  https://doi.org/10.1103/PhysRevC.86.025805 ADSCrossRefGoogle Scholar
  199. Gulminelli, F., Raduta, A.R., Oertel, M., Margueron, J.: Strangeness-driven phase transition in (proto-)neutron star matter. Phys. Rev. C 87(5), 055809 (2013).  https://doi.org/10.1103/PhysRevC.87.055809 ADSCrossRefGoogle Scholar
  200. Güver, T., Özel, F.: The mass and the radius of the neutron star in the transient low-mass X-ray binary SAX J1748.9-2021. Astrophys. J. Lett. 765, L1 (2013). https://doi.org/10.1088/2041-8205/765/1/L1 ADSCrossRefGoogle Scholar
  201. Haar, B.T., Malfliet, R.: Nucleons, mesons and deltas in nuclear matter a relativistic Dirac-Brueckner approach. Phys. Rep. 149, 207–286 (1987). https://doi.org/10.1016/0370-1573(87)90085-8 ADSCrossRefGoogle Scholar
  202. Haensel, P., Pichon, B.: Experimental nuclear masses and the ground state of cold dense matter. Astron. Astrophys. 283, 313–318 (1994)ADSGoogle Scholar
  203. Haensel, P., Potekhin, A.Y., Yakovlev, D.G.: Neutron Stars 1: Equation of State and Structure. Springer, New York (2007). https://doi.org/10.1007/978-0-387-47301-7 Google Scholar
  204. Haensel, P., Zdunik, J.L., Bejger, M., Lattimer, J.M.: Keplerian frequency of uniformly rotating neutron stars and strange stars. Astron. Astrophys. 502, 605–610 (2009). https://doi.org/10.1051/0004-6361/200811605 ADSzbMATHCrossRefGoogle Scholar
  205. Hagen, G., Papenbrock, T., Dean, D.J., Schwenk, A., Nogga, A., Włoch, M., Piecuch, P.: Coupled-cluster theory for three-body Hamiltonians. Phys. Rev. C 76(3), 034302 (2007).  https://doi.org/10.1103/PhysRevC.76.034302 ADSCrossRefGoogle Scholar
  206. Hagen, G., Papenbrock, T., Dean, D.J., Hjorth-Jensen, M.: Ab initio coupled-cluster approach to nuclear structure with modern nucleon-nucleon interactions. Phys. Rev. C 82(3), 034330 (2010).  https://doi.org/10.1103/PhysRevC.82.034330 ADSCrossRefGoogle Scholar
  207. Hagen, G., Hjorth-Jensen, M., Jansen, G.R., Machleidt, R., Papenbrock, T.: Evolution of shell structure in neutron-rich calcium isotopes. Phys. Rev. Lett. 109(3), 032502 (2012).  https://doi.org/10.1103/PhysRevLett.109.032502 ADSCrossRefGoogle Scholar
  208. Hagen, G., Papenbrock, T., Ekström, A., Wendt, K.A., Baardsen, G., Gandolfi, S., Hjorth-Jensen, M., Horowitz, C.J.: Coupled-cluster calculations of nucleonic matter. Phys. Rev. C 89(1), 014319 (2014).  https://doi.org/10.1103/PhysRevC.89.014319 ADSCrossRefGoogle Scholar
  209. Hartnack, C., Oeschler, H., Aichelin, J.: Hadronic matter is soft. Phys. Rev. Lett. 96(1), 012302 (2006).  https://doi.org/10.1103/PhysRevLett.96.012302 ADSCrossRefGoogle Scholar
  210. Hashimoto, M., Seki, H., Yamada, M.: Shape of nuclei in the crust of a neutron star. Prog. Theor. Phys. 71, 320–326 (1984).  https://doi.org/10.1143/PTP.71.320 ADSCrossRefGoogle Scholar
  211. Hebeler, K., Schwenk, A.: Chiral three-nucleon forces and neutron matter. Phys. Rev. C 82(1), 014314 (2010).  https://doi.org/10.1103/PhysRevC.82.014314 ADSCrossRefGoogle Scholar
  212. Hebeler, K., Bogner, S.K., Furnstahl, R.J., Nogga, A., Schwenk, A.: Improved nuclear matter calculations from chiral low-momentum interactions. Phys. Rev. C 83(3), 031301 (2011).  https://doi.org/10.1103/PhysRevC.83.031301 ADSCrossRefGoogle Scholar
  213. Heinimann, O., Hempel, M., Thielemann, F.K.: Towards generating a new supernova equation of state: a systematic analysis of cold hybrid stars. Phys. Rev. D 94(10), 103008 (2016).  https://doi.org/10.1103/PhysRevD.94.103008 ADSCrossRefGoogle Scholar
  214. Heinke, C.O., Ho, W.C.G.: Direct observation of the cooling of the Cassiopeia A neutron star. Astrophys. J. Lett. 719, L167–L171 (2010). https://doi.org/10.1088/2041-8205/719/2/L167 ADSCrossRefGoogle Scholar
  215. Heinke, C.O., Jonker, P.G., Wijnands, R., Deloye, C.J., Taam, R.E.: Further constraints on thermal quiescent X-ray emission from SAX J1808.4-3658. Astrophys. J. 691, 1035–1041 (2009). https://doi.org/10.1088/0004-637X/691/2/1035 ADSCrossRefGoogle Scholar
  216. Hellemans, V., Heenen, P.H., Bender, M.: Tensor part of the Skyrme energy density functional. III. Time-odd terms at high spin. Phys. Rev. C 85(1), 014326 (2012).  https://doi.org/10.1103/PhysRevC.85.014326 Google Scholar
  217. Hellemans, V., Pastore, A., Duguet, T., Bennaceur, K., Davesne, D., Meyer, J., Bender, M., Heenen, P.H.: Spurious finite-size instabilities in nuclear energy density functionals. Phys. Rev. C 88(6), 064323 (2013).  https://doi.org/10.1103/PhysRevC.88.064323 ADSCrossRefGoogle Scholar
  218. Hempel, M., Schaffner-Bielich, J.: A statistical model for a complete supernova equation of state. Nucl. Phys. A 837, 210–254 (2010). https://doi.org/10.1016/j.nuclphysa.2010.02.010 ADSCrossRefGoogle Scholar
  219. Hempel, M., Schaffner-Bielich, J., Typel, S., Röpke, G.: Light clusters in nuclear matter: excluded volume versus quantum many-body approaches. Phys. Rev. C 84(5), 055804 (2011).  https://doi.org/10.1103/PhysRevC.84.055804 ADSCrossRefGoogle Scholar
  220. Hempel, M., Fischer, T., Schaffner-Bielich, J., Liebendörfer, M.: New equations of state in simulations of core-collapse supernovae. Astrophys. J. 748, 70 (2012). https://doi.org/10.1088/0004-637X/748/1/70 ADSCrossRefGoogle Scholar
  221. Hempel, M., Hagel, K., Natowitz, J., Röpke, G., Typel, S.: Constraining supernova equations of state with equilibrium constants from heavy-ion collisions. Phys. Rev. C 91(4), 045805 (2015).  https://doi.org/10.1103/PhysRevC.91.045805 ADSCrossRefGoogle Scholar
  222. Hessels, J.W.T., Ransom, S.M., Stairs, I.H., Freire, P.C.C., Kaspi, V.M., Camilo, F.: A radio pulsar spinning at 716 Hz. Science 311, 1901–1904 (2006).  https://doi.org/10.1126/science.1123430 ADSCrossRefGoogle Scholar
  223. Higdon, J.C., Lingenfelter, R.E.: Gamma-ray bursts. Annu. Rev. Astron. Astrophys. 28, 401–436 (1990).  https://doi.org/10.1146/annurev.aa.28.090190.002153 ADSCrossRefGoogle Scholar
  224. Hilaire, S., Goriely, S., Péru, S., Dubray, N., Dupuis, M., Bauge, E.: Nuclear reaction inputs based on effective interactions. Eur. Phys. J. A 52, 336 (2016).  https://doi.org/10.1140/epja/i2016-16336-2 ADSCrossRefGoogle Scholar
  225. Hillebrandt, W., Wolff, R.G.: Models of type II supernova explosions. In: Arnett, W.D., Truran, J.W. (eds.) Nucleosynthesis: Challenges and New Developments, p. 131. University of Chicago Press, Chicago (1985)Google Scholar
  226. Hillebrandt, W., Nomoto, K., Wolff, R.G.: Supernova explosions of massive stars - the mass range 8 to 10 solar masses. Astron. Astrophys. 133, 175–184 (1984)ADSGoogle Scholar
  227. Hix, W.R., Messer, O.E.B., Mezzacappa, A., Liebendörfer, M., Sampaio, J., Langanke, K., Dean, D.J., Martínez-Pinedo, G.: Consequences of nuclear electron capture in core collapse supernovae. Phys. Rev. Lett. 91(20), 201102 (2003).  https://doi.org/10.1103/PhysRevLett.91.201102 ADSCrossRefGoogle Scholar
  228. Ho, W.C.G., Elshamouty, K.G., Heinke, C.O., Potekhin, A.Y.: Tests of the nuclear equation of state and superfluid and superconducting gaps using the Cassiopeia A neutron star. Phys. Rev. C 91(1), 015806 (2015).  https://doi.org/10.1103/PhysRevC.91.015806 ADSCrossRefGoogle Scholar
  229. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, 864–871 (1964).  https://doi.org/10.1103/PhysRev.136.B864 ADSMathSciNetCrossRefGoogle Scholar
  230. Holt, J.W., Kaiser, N.: Equation of state of nuclear and neutron matter at third-order in perturbation theory from chiral effective field theory. Phys. Rev. C 95(3), 034326 (2017).  https://doi.org/10.1103/PhysRevC.95.034326 ADSCrossRefGoogle Scholar
  231. Holt, J.W., Kaiser, N., Weise, W.: Density-dependent effective nucleon-nucleon interaction from chiral three-nucleon forces. Phys. Rev. C 81(2), 024002 (2010).  https://doi.org/10.1103/PhysRevC.81.024002 ADSCrossRefGoogle Scholar
  232. Holt, J.W., Kaiser, N., Weise, W.: Nuclear chiral dynamics and thermodynamics. Prog. Part. Nucl. Phys. 73, 35–83 (2013). https://doi.org/10.1016/j.ppnp.2013.08.001 ADSCrossRefGoogle Scholar
  233. Horowitz, C.J., Schwenk, A.: Cluster formation and the virial equation of state of low-density nuclear matter. Nucl. Phys. A 776, 55–79 (2006a). https://doi.org/10.1016/j.nuclphysa.2006.05.009 ADSCrossRefGoogle Scholar
  234. Horowitz, C.J., Schwenk, A.: The virial equation of state of low-density neutron matter. Phys. Lett. B 638, 153–159 (2006b). https://doi.org/10.1016/j.physletb.2006.05.055 ADSCrossRefGoogle Scholar
  235. Horowitz, C.J., Brown, E.F., Kim, Y., Lynch, W.G., Michaels, R., Ono, A., Piekarewicz, J., Tsang, M.B., Wolter, H.H.: A way forward in the study of the symmetry energy: experiment, theory, and observation. J. Phys. G: Nucl. Part. Phys. 41(9), 093001 (2014). https://doi.org/10.1088/0954-3899/41/9/093001 ADSCrossRefGoogle Scholar
  236. Horowitz, C.J., Berry, D.K., Briggs, C.M., Caplan, M.E., Cumming, A., Schneider, A.S.: Disordered nuclear pasta, magnetic field decay, and crust cooling in neutron stars. Phys. Rev. Lett. 114(3), 031102 (2015).  https://doi.org/10.1103/PhysRevLett.114.031102 ADSCrossRefGoogle Scholar
  237. Hu, J., Zhang, Y., Epelbaum, E., Meißner, U.G., Meng, J.: Nuclear matter properties with nucleon-nucleon forces up to fifth order in the chiral expansion. Phys. Rev. C 96(3), 034307 (2017).  https://doi.org/10.1103/PhysRevC.96.034307 ADSCrossRefGoogle Scholar
  238. Huber, H., Weber, F., Weigel, M.K.: Symmetric and asymmetric nuclear matter in the relativistic approach at finite temperatures. Phys. Rev. C 57, 3484–3487 (1998).  https://doi.org/10.1103/PhysRevC.57.3484 ADSCrossRefGoogle Scholar
  239. Iliadis, C.I.: Nuclear Physics of Stars. Wiley-VCH, Weinheim (2007). https://doi.org/10.1002/9783527692668 Google Scholar
  240. Ishizuka, C., Ohnishi, A., Sumiyoshi, K.: Liquid-gas phase transition of supernova matter and its relation to nucleosynthesis. Nucl. Phys. A 723, 517–543 (2003). https://doi.org/10.1016/S0375-9474(03)01324-1 ADSCrossRefGoogle Scholar
  241. Ishizuka, C., Ohnishi, A., Tsubakihara, K., Sumiyoshi, K., Yamada, S.: Tables of hyperonic matter equation of state for core-collapse supernovae. J. Phys. G: Nucl. Part. Phys. 35(8), 085201 (2008). https://doi.org/10.1088/0954-3899/35/8/085201 ADSCrossRefGoogle Scholar
  242. Janka, H.T.: Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci. 62, 407–451 (2012).  https://doi.org/10.1146/annurev-nucl-102711-094901 ADSCrossRefGoogle Scholar
  243. Janka, H.T., Langanke, K., Marek, A., Martínez-Pinedo, G., Müller, B.: Theory of core-collapse supernovae. Phys. Rep. 442, 38–74 (2007). https://doi.org/10.1016/j.physrep.2007.02.002 ADSCrossRefGoogle Scholar
  244. Janka, H.T., Melson, T., Summa, A.: Physics of core-collapse supernovae in three dimensions: a sneak preview. Annu. Rev. Nucl. Part. Sci. 66, 341–375 (2016).  https://doi.org/10.1146/annurev-nucl-102115-044747 ADSCrossRefGoogle Scholar
  245. Jonker, P.G., Steeghs, D., Chakrabarty, D., Juett, A.M.: The cold neutron star in the soft X-ray transient 1H 1905+000. Astrophys. J. Lett. 665, L147–L150 (2007). https://doi.org/10.1086/521079 ADSCrossRefGoogle Scholar
  246. Kaiser, N., Fritsch, S., Weise, W.: Chiral dynamics and nuclear matter. Nucl. Phys. A 697, 255–276 (2002). https://doi.org/10.1016/S0375-9474(01)01231-3 ADSzbMATHCrossRefGoogle Scholar
  247. Kaplan, D.L., Frail, D.A., Gaensler, B.M., Gotthelf, E.V., Kulkarni, S.R., Slane, P.O., Nechita, A.: An X-ray search for compact central sources in supernova remnants. I. SNRS G093.3+6.9, G315.4-2.3, G084.2+0.8, and G127.1+0.5. Astrophys. J. Suppl. Ser. 153, 269–315 (2004). https://doi.org/10.1086/421065 ADSCrossRefGoogle Scholar
  248. Kaplan, D.L., Gaensler, B.M., Kulkarni, S.R., Slane, P.O.: An X-ray search for compact central sources in supernova remnants. II. Six large-diameter SNRs. Astrophys. J. Suppl. Ser. 163, 344–371 (2006). https://doi.org/10.1086/501441 ADSCrossRefGoogle Scholar
  249. Karnaukhov, V.A., Oeschler, H., Budzanowski, A., Avdeyev, S.P., Botvina, A.S., Cherepanov, E.A., Karcz, W., Kirakosyan, V.V., Rukoyatkin, P.A., Skwirczyńska, I., Norbeck, E.: Critical temperature for the nuclear liquid-gas phase transition (from multifragmentation and fission). Phys. At. Nucl. 71, 2067–2073 (2008). https://doi.org/10.1134/S1063778808120077 CrossRefGoogle Scholar
  250. Khan, E., Margueron, J.: Determination of the density dependence of the nuclear incompressibility. Phys. Rev. C 88(3), 034319 (2013).  https://doi.org/10.1103/PhysRevC.88.034319 ADSCrossRefGoogle Scholar
  251. Kitaura, F.S., Janka, H.T., Hillebrandt, W.: Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae. Astron. Astrophys. 450, 345–350 (2006). https://doi.org/10.1051/0004-6361:20054703 ADSCrossRefGoogle Scholar
  252. Klähn, T., Blaschke, D., Typel, S., van Dalen, E.N.E., Faessler, A., Fuchs, C., Gaitanos, T., Grigorian, H., Ho, A., Kolomeitsev, E.E., Miller, M.C., Röpke, G., Trümper, J., Voskresensky, D.N., Weber, F., Wolter, H.H.: Constraints on the high-density nuclear equation of state from the phenomenology of compact stars and heavy-ion collisions. Phys. Rev. C 74(3), 035802 (2006).  https://doi.org/10.1103/PhysRevC.74.035802 ADSCrossRefGoogle Scholar
  253. Klochkov, D., Suleimanov, V., Pühlhofer, G., Yakovlev, D.G., Santangelo, A., Werner, K.: The neutron star in HESS J1731-347: central compact objects as laboratories to study the equation of state of superdense matter. Astron. Astrophys. 573, A53 (2015). https://doi.org/10.1051/0004-6361/201424683 CrossRefGoogle Scholar
  254. Köhler, H.S.: Skyrme force and the mass formula. Nucl. Phys. A 258, 301–316 (1976). https://doi.org/10.1016/0375-9474(76)90008-7 ADSCrossRefGoogle Scholar
  255. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133–1138 (1965).  https://doi.org/10.1103/PhysRev.140.A1133 ADSMathSciNetCrossRefGoogle Scholar
  256. Kohno, M.: Nuclear and neutron matter G-matrix calculations with a chiral effective field theory potential including effects of three-nucleon interactions. Phys. Rev. C 88(6), 064005 (2013).  https://doi.org/10.1103/PhysRevC.88.064005 ADSCrossRefGoogle Scholar
  257. Kortelainen, M., McDonnell, J., Nazarewicz, W., Olsen, E., Reinhard, P.G., Sarich, J., Schunck, N., Wild, S.M., Davesne, D., Erler, J., Pastore, A.: Nuclear energy density optimization: shell structure. Phys. Rev. C 89(5), 054314 (2014).  https://doi.org/10.1103/PhysRevC.89.054314 ADSCrossRefGoogle Scholar
  258. Kramer, M., Stairs, I.H., Manchester, R.N., McLaughlin, M.A., Lyne, A.G., Ferdman, R.D., Burgay, M., Lorimer, D.R., Possenti, A., D’Amico, N., Sarkissian, J.M., Hobbs, G.B., Reynolds, J.E., Freire, P.C.C., Camilo, F.: Tests of general relativity from timing the double pulsar. Science 314, 97–102 (2006).  https://doi.org/10.1126/science.1132305 ADSCrossRefGoogle Scholar
  259. Krastev, P.G., Li, B.A., Worley, A.: Constraining properties of rapidly rotating neutron stars using data from heavy-ion collisions. Astrophys. J. 676, 1170–1177 (2008). https://doi.org/10.1086/528736 ADSCrossRefGoogle Scholar
  260. Kumar, B., Biswal, S.K., Patra, S.K.: Tidal deformability of neutron and hyperon stars within relativistic mean field equations of state. Phys. Rev. C 95(1), 015801 (2017).  https://doi.org/10.1103/PhysRevC.95.015801 ADSCrossRefGoogle Scholar
  261. Lacombe, M., Loiseau, B., Richard, J.M., Mau, R.V., Côté, J., Pirès, P., de Tourreil, R.: Parametrization of the Paris N-N potential. Phys. Rev. C 21, 861–873 (1980).  https://doi.org/10.1103/PhysRevC.21.861 ADSCrossRefGoogle Scholar
  262. Lacour, A., Oller, J.A., Meißner, U.G.: Non-perturbative methods for a chiral effective field theory of finite density nuclear systems. Ann. Phys. 326, 241–306 (2011). https://doi.org/10.1016/j.aop.2010.06.012 ADSzbMATHCrossRefGoogle Scholar
  263. Lacroix, D.: Introduction - strong interaction in the nuclear medium: new trends. ArXiv e-prints (2010). arxiv:1001.5001Google Scholar
  264. Lagaris, I.E., Pandharipande, V.R.: Phenomenological two-nucleon interaction operator. Nucl. Phys. A 359, 331–348 (1981). https://doi.org/10.1016/0375-9474(81)90240-2 ADSCrossRefGoogle Scholar
  265. Lalazissis, G.A., König, J., Ring, P.: New parametrization for the Lagrangian density of relativistic mean field theory. Phys. Rev. C 55, 540–543 (1997).  https://doi.org/10.1103/PhysRevC.55.540 ADSCrossRefGoogle Scholar
  266. Lalazissis, G.A., Ring, P., Vretenar, D. (eds.): Extended Density Functionals in Nuclear Structure Physics. Lecture Notes in Physics, vol. 641. Springer, Berlin (2004). https://doi.org/10.1007/b95720 Google Scholar
  267. Landau, L.D., Lifshitz, E.M.: Statistical Physics. Pt.1, Pt.2. Pergamon, Oxford (1980)Google Scholar
  268. Langanke, K., Martínez-Pinedo, G.: Nuclear weak-interaction processes in stars. Rev. Mod. Phys. 75, 819–862 (2003).  https://doi.org/10.1103/RevModPhys.75.819 ADSCrossRefGoogle Scholar
  269. Langanke, K., Martínez-Pinedo, G.: The role of electron capture in core-collapse supernovae. Nucl. Phys. A 928, 305–312 (2014). https://doi.org/10.1016/j.nuclphysa.2014.04.015 ADSCrossRefGoogle Scholar
  270. Lasky, P.D., Haskell, B., Ravi, V., Howell, E.J., Coward, D.M.: Nuclear equation of state from observations of short gamma-ray burst remnants. Phys. Rev. D 89(4), 047302 (2014).  https://doi.org/10.1103/PhysRevD.89.047302 ADSCrossRefGoogle Scholar
  271. Lattimer, J.M.: The equation of state of hot dense matter and supernovae. Annu. Rev. Nucl. Part. Sci. 31, 337–374 (1981).  https://doi.org/10.1146/annurev.ns.31.120181.002005 ADSCrossRefGoogle Scholar
  272. Lattimer, J.M.: The nuclear equation of state and supernovae. In: Nuclear Equation of State, pp. 83–208. World Scientific, Singapore (1996)Google Scholar
  273. Lattimer, J.M.: The nuclear equation of state and neutron star masses. Annu. Rev. Nucl. Part. Sci. 62, 485–515 (2012).  https://doi.org/10.1146/annurev-nucl-102711-095018 ADSCrossRefGoogle Scholar
  274. Lattimer, J.M., Douglas Swesty, F.: A generalized equation of state for hot, dense matter. Nucl. Phys. A 535, 331–376 (1991). https://doi.org/10.1016/0375-9474(91)90452-C ADSCrossRefGoogle Scholar
  275. Lattimer, J.M., Lim, Y.: Constraining the symmetry parameters of the nuclear interaction. Astrophys. J. 771, 51 (2013). https://doi.org/10.1088/0004-637X/771/1/51 ADSCrossRefGoogle Scholar
  276. Lattimer, J.M., Prakash, M.: Nuclear matter and its role in supernovae, neutron stars and compact object binary mergers. Phys. Rep. 333–334, 121–146 (2000). https://doi.org/10.1016/S0370-1573(00)00019-3 ADSCrossRefGoogle Scholar
  277. Lattimer, J.M., Prakash, M.: Neutron star observations: prognosis for equation of state constraints. Phys. Rep. 442, 109–165 (2007). https://doi.org/10.1016/j.physrep.2007.02.003 ADSCrossRefGoogle Scholar
  278. Lattimer, J.M., Prakash, M.: The equation of state of hot, dense matter and neutron stars. Phys. Rep. 621, 127–164 (2016). https://doi.org/10.1016/j.physrep.2015.12.005 ADSMathSciNetCrossRefGoogle Scholar
  279. Lattimer, J.M., Schutz, B.F.: Constraining the equation of state with moment of inertia measurements. Astrophys. J. 629, 979–984 (2005). https://doi.org/10.1086/431543 ADSCrossRefGoogle Scholar
  280. Lattimer, J.M., Steiner, A.W.: Constraints on the symmetry energy using the mass-radius relation of neutron stars. Eur. Phys. J. A 50, 40 (2014).  https://doi.org/10.1140/epja/i2014-14040-y ADSCrossRefGoogle Scholar
  281. Lattimer, J.M., Pethick, C.J., Ravenhall, D.G., Lamb, D.Q.: Physical properties of hot, dense matter: the general case. Nucl. Phys. A 432, 646–742 (1985). https://doi.org/10.1016/0375-9474(85)90006-5 ADSCrossRefGoogle Scholar
  282. Lattimer, J.M., Pethick, C.J., Prakash, M., Haensel, P.: Direct URCA process in neutron stars. Phys. Rev. Lett. 66, 2701–2704 (1991).  https://doi.org/10.1103/PhysRevLett.66.2701 ADSCrossRefGoogle Scholar
  283. Lawrence, S., Tervala, J.G., Bedaque, P.F., Miller, M.C.: An upper bound on neutron star masses from models of short gamma-ray bursts. Astrophys. J. 808, 186 (2015). https://doi.org/10.1088/0004-637X/808/2/186 ADSCrossRefGoogle Scholar
  284. Le Fèvre, A., Leifels, Y., Reisdorf, W., Aichelin, J., Hartnack, C.: Constraining the nuclear matter equation of state around twice saturation density. Nucl. Phys. A 945, 112–133 (2016). http://dx.doi.org/10.1016/j.nuclphysa.2015.09.015; http://www.sciencedirect.com/science/article/pii/S0375947415002225
  285. Lesinski, T., Bender, M., Bennaceur, K., Duguet, T., Meyer, J.: Tensor part of the Skyrme energy density functional: spherical nuclei. Phys. Rev. C 76(1), 014312 (2007).  https://doi.org/10.1103/PhysRevC.76.014312 ADSCrossRefGoogle Scholar
  286. Li, B.A., Han, X.: Constraining the neutron-proton effective mass splitting using empirical constraints on the density dependence of nuclear symmetry energy around normal density. Phys. Lett. B 727(1–3), 276–281 (2013). http://dx.doi.org/10.1016/j.physletb.2013.10.006; https://www.sciencedirect.com/science/article/pii/S0370269313007995 ADSCrossRefGoogle Scholar
  287. Li, Z.H., Schulze, H.J.: Neutron star structure with modern nucleonic three-body forces. Phys. Rev. C 78, 028801 (2008).  https://doi.org/10.1103/PhysRevC.78.028801 ADSCrossRefGoogle Scholar
  288. Li, Z.H., Schulze, H.J.: Nuclear matter with chiral forces in Brueckner-Hartree-Fock approximation. Phys. Rev. C 85(6), 064002 (2012).  https://doi.org/10.1103/PhysRevC.85.064002 ADSCrossRefGoogle Scholar
  289. Li, Z.H., Lombardo, U., Schulze, H.J., Zuo, W., Chen, L.W., Ma, H.R.: Nuclear matter saturation point and symmetry energy with modern nucleon-nucleon potentials. Phys. Rev. C 74(4), 047304 (2006).  https://doi.org/10.1103/PhysRevC.74.047304 ADSCrossRefGoogle Scholar
  290. Li, Z.H., Lombardo, U., Schulze, H.J., Zuo, W.: Consistent nucleon-nucleon potentials and three-body forces. Phys. Rev. C 77, 034316 (2008).  https://doi.org/10.1103/PhysRevC.77.034316 ADSCrossRefGoogle Scholar
  291. Li, B.A., Ramos, A., Verde, G., Vidaña, I.: Topical issue on nuclear symmetry energy. Eur. Phys. J. A 50, 9 (2014). http://dx.doi.org/10.1140/epja/i2014-14009-xADSCrossRefGoogle Scholar
  292. Lin, J., Özel, F., Chakrabarty, D., Psaltis, D.: The incompatibility of rapid rotation with narrow photospheric X-ray lines in EXO 0748-676. Astrophys. J. 723, 1053–1056 (2010). https://doi.org/10.1088/0004-637X/723/2/1053 ADSCrossRefGoogle Scholar
  293. Liu, X.J., Hu, H., Drummond, P.D.: Virial expansion for a strongly correlated fermi gas. Phys. Rev. Lett. 102(16), 160401 (2009).  https://doi.org/10.1103/PhysRevLett.102.160401 ADSCrossRefGoogle Scholar
  294. Logoteta, D., Vidaña, I., Bombaci, I., Kievsky, A.: Comparative study of three-nucleon force models in nuclear matter. Phys. Rev. C 91(6), 064001 (2015).  https://doi.org/10.1103/PhysRevC.91.064001 ADSCrossRefGoogle Scholar
  295. Logoteta, D., Bombaci, I., Kievsky, A.: Nuclear matter saturation with chiral three-nucleon interactions fitted to light nuclei properties. Phys. Lett. B 758, 449–454 (2016). https://doi.org/10.1016/j.physletb.2016.05.042 ADSCrossRefGoogle Scholar
  296. Long, W., Meng, J., Giai, N.V., Zhou, S.G.: New effective interactions in relativistic mean field theory with nonlinear terms and density-dependent meson-nucleon coupling. Phys. Rev. C 69(3), 034319 (2004).  https://doi.org/10.1103/PhysRevC.69.034319 ADSCrossRefGoogle Scholar
  297. Long, W., Sagawa, H., Giai, N.V., Meng, J.: Shell structure and ρ-tensor correlations in density dependent relativistic Hartree-Fock theory. Phys. Rev. C 76(3), 034314 (2007).  https://doi.org/10.1103/PhysRevC.76.034314 ADSCrossRefGoogle Scholar
  298. Long, W.H., Ring, P., Giai, N.V., Meng, J.: Relativistic Hartree-Fock-Bogoliubov theory with density dependent meson-nucleon couplings. Phys. Rev. C 81(2), 024308 (2010).  https://doi.org/10.1103/PhysRevC.81.024308 ADSCrossRefGoogle Scholar
  299. López, J.A., Ramírez-Homs, E., González, R., Ravelo, R.: Isospin-asymmetric nuclear matter. Phys. Rev. C 89(2), 024611 (2014).  https://doi.org/10.1103/PhysRevC.89.024611 ADSCrossRefGoogle Scholar
  300. Lorenz, C.P., Ravenhall, D.G., Pethick, C.J.: Neutron star crusts. Phys. Rev. Lett. 70, 379–382 (1993).  https://doi.org/10.1103/PhysRevLett.70.379 ADSCrossRefGoogle Scholar
  301. Lynch, W.G., Tsang, M.B., Zhang, Y., Danielewicz, P., Famiano, M., Li, Z., Steiner, A.W.: Probing the symmetry energy with heavy ions. Prog. Part. Nucl. Phys. 62, 427–432 (2009). https://doi.org/10.1016/j.ppnp.2009.01.001 ADSCrossRefGoogle Scholar
  302. Lynn, J.E., Tews, I., Carlson, J., Gandolfi, S., Gezerlis, A., Schmidt, K.E., Schwenk, A.: Chiral three-nucleon interactions in light nuclei, neutron-α scattering, and neutron matter. Phys. Rev. Lett. 116(6), 062501 (2016).  https://doi.org/10.1103/PhysRevLett.116.062501 ADSCrossRefGoogle Scholar
  303. Machleidt, R.: The meson theory of nuclear forces and nuclear structure. In: Advances in Nuclear Physics, pp. 189–376. Springer, Boston (1989)CrossRefGoogle Scholar
  304. Machleidt, R., Entem, D.R.: Chiral effective field theory and nuclear forces. Phys. Rep. 503, 1–75 (2011). https://doi.org/10.1016/j.physrep.2011.02.001 ADSCrossRefGoogle Scholar
  305. Machleidt, R., Slaus, I.: Topical review: the nucleon-nucleon interaction. J. Phys. G: Nucl. Part. Phys. 27, R69–R108 (2001). https://doi.org/10.1088/0954-3899/27/5/201 ADSCrossRefGoogle Scholar
  306. Maessen, P.M.M., Rijken, T.A., de Swart, J.J.: Soft-core baryon-baryon one-boson-exchange models. II. Hyperon-nucleon potential. Phys. Rev. C 40, 2226–2245 (1989).  https://doi.org/10.1103/PhysRevC.40.2226 Google Scholar
  307. Magierski, P., Bulgac, A., Heenen, P.H.: Exotic nuclear phases in the inner crust of neutron stars in the light of Skyrme-Hartree-Fock theory. Nucl. Phys. A 719, C217–C220 (2003). https://doi.org/10.1016/S0375-9474(03)00921-7 ADSCrossRefGoogle Scholar
  308. Marek, A., Janka, H.T., Müller, E.: Equation-of-state dependent features in shock-oscillation modulated neutrino and gravitational-wave signals from supernovae. Astron. Astrophys. 496, 475–494 (2009). https://doi.org/10.1051/0004-6361/200810883 ADSCrossRefGoogle Scholar
  309. Margueron, J., Sagawa, H.: Extended Skyrme interaction: I. Spin fluctuations in dense matter. J. Phys. G: Nucl. Part. Phys. 36(12), 125102 (2009). https://doi.org/10.1088/0954-3899/36/12/125102 Google Scholar
  310. Margueron, J., Goriely, S., Grasso, M., Colò, G., Sagawa, H.: Extended Skyrme interaction: II. Ground state of nuclei and of nuclear matter. J. Phys. G: Nucl. Part. Phys. 36(12), 125103 (2009). https://doi.org/10.1088/0954-3899/36/12/125103 ADSCrossRefGoogle Scholar
  311. Margueron, J., Grasso, M., Goriely, S., Colò, G., Sagawa, H.: Extended Skyrme interaction in the spin channel. Prog. Theor. Phys. Suppl. 196, 172–175 (2012).  https://doi.org/10.1143/PTPS.196.172 ADSCrossRefGoogle Scholar
  312. Margueron, J., Hoffmann Casali, R., Gulminelli, F.: Equation of state for dense nucleonic matter from metamodeling. I. Foundational aspects. Phys. Rev. C 97(2), 025805 (2018a).  https://doi.org/10.1103/PhysRevC.97.025805 Google Scholar
  313. Margueron, J., Hoffmann Casali, R., Gulminelli, F.: Equation of state for dense nucleonic matter from metamodeling. II. Predictions for neutron star properties. Phys. Rev. C 97(2), 025806 (2018b).  https://doi.org/10.1103/PhysRevC.97.025806 Google Scholar
  314. Maruyama, T., Tatsumi, T., Voskresensky, D.N., Tanigawa, T., Chiba, S.: Nuclear “pasta” structures and the charge screening effect. Phys. Rev. C 72(1), 015802 (2005).  https://doi.org/10.1103/PhysRevC.72.015802 ADSCrossRefGoogle Scholar
  315. Maruyama, T., Watanabe, G., Chiba, S.: Molecular dynamics for dense matter. Prog. Theor. Exp. Phys. 2012(1), 01A201 (2012).  https://doi.org/10.1093/ptep/pts013
  316. Maselli, A., Gualtieri, L., Ferrari, V.: Constraining the equation of state of nuclear matter with gravitational wave observations: tidal deformability and tidal disruption. Phys. Rev. D 88(10), 104040 (2013).  https://doi.org/10.1103/PhysRevD.88.104040 ADSCrossRefGoogle Scholar
  317. Maslov, K.A., Kolomeitsev, E.E., Voskresensky, D.N.: Making a soft relativistic mean-field equation of state stiffer at high density. Phys. Rev. C 92(5), 052801 (2015).  https://doi.org/10.1103/PhysRevC.92.052801 ADSCrossRefGoogle Scholar
  318. Meißner, U.G.: Modern theory of nuclear forces. Nucl. Phys. A 751, 149–166 (2005). https://doi.org/10.1016/j.nuclphysa.2005.02.023 ADSCrossRefGoogle Scholar
  319. Meng, J., Toki, H., Zhou, S.G., Zhang, S.Q., Long, W.H., Geng, L.S.: Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei. Prog. Part. Nucl. Phys. 57, 470–563 (2006). https://doi.org/10.1016/j.ppnp.2005.06.001 ADSCrossRefGoogle Scholar
  320. Mezzacappa, A.: Ascertaining the core collapse supernova mechanism: the state of the art and the road ahead. Annu. Rev. Nucl. Part. Sci. 55, 467–515 (2005).  https://doi.org/10.1146/annurev.nucl.55.090704.151608 ADSCrossRefGoogle Scholar
  321. Miyatsu, T., Yamamuro, S., Nakazato, K.: A new equation of state for neutron star matter with nuclei in the crust and hyperons in the core. Astrophys. J. 777, 4 (2013). https://doi.org/10.1088/0004-637X/777/1/4 ADSCrossRefGoogle Scholar
  322. Möller, P., Myers, W.D., Sagawa, H., Yoshida, S.: New finite-range droplet mass model and equation-of-state parameters. Phys. Rev. Lett. 108(5), 052501 (2012).  https://doi.org/10.1103/PhysRevLett.108.052501 ADSCrossRefGoogle Scholar
  323. Moustakidis, C.C., Panos, C.P.: Equation of state for β-stable hot nuclear matter. Phys. Rev. C 79(4), 045806 (2009).  https://doi.org/10.1103/PhysRevC.79.045806 ADSCrossRefGoogle Scholar
  324. Müther, H., Polls, A.: Two-body correlations in nuclear systems. Prog. Part. Nucl. Phys. 45, 243–334 (2000). https://doi.org/10.1016/S0146-6410(00)00105-8 ADSCrossRefGoogle Scholar
  325. Myers, W.D., Swiatecki, W.J.: Average nuclear properties. Ann. Phys. 55, 395–505 (1969). https://doi.org/10.1016/0003-4916(69)90202-4 ADSCrossRefGoogle Scholar
  326. Nagels, M.M., Rijken, T.A., de Swart, J.J.: Baryon-baryon scattering in a one-boson-exchange-potential approach. II. Hyperon-nucleon scattering. Phys. Rev. D 15, 2547–2564 (1977).  https://doi.org/10.1103/PhysRevD.15.2547 Google Scholar
  327. Nagels, M.M., Rijken, T.A., de Swart, J.J.: Low-energy nucleon-nucleon potential from Regge-pole theory. Phys. Rev. D 17, 768–776 (1978).  https://doi.org/10.1103/PhysRevD.17.768 ADSCrossRefGoogle Scholar
  328. Nakada, H.: Hartree-Fock approach to nuclear matter and finite nuclei with M3Y-type nucleon-nucleon interactions. Phys. Rev. C 68(1), 014316 (2003).  https://doi.org/10.1103/PhysRevC.68.014316 ADSCrossRefGoogle Scholar
  329. Nakazato, K., Sumiyoshi, K., Yamada, S.: Astrophysical implications of equation of state for hadron-quark mixed phase: compact stars and stellar collapses. Phys. Rev. D 77(10), 103006 (2008).  https://doi.org/10.1103/PhysRevD.77.103006 ADSCrossRefGoogle Scholar
  330. Nakazato, K., Iida, K., Oyamatsu, K.: Curvature effect on nuclear “pasta”: is it helpful for gyroid appearance? Phys. Rev. C 83(6), 065811 (2011).  https://doi.org/10.1103/PhysRevC.83.065811 ADSCrossRefGoogle Scholar
  331. Nakazato, K., Furusawa, S., Sumiyoshi, K., Ohnishi, A., Yamada, S., Suzuki, H.: Hyperon matter and black hole formation in failed supernovae. Astrophys. J. 745, 197 (2012). https://doi.org/10.1088/0004-637X/745/2/197 ADSCrossRefGoogle Scholar
  332. Nakazato, K., Sumiyoshi, K., Yamada, S.: Stellar core collapse with hadron-quark phase transition. Astron. Astrophys. 558, A50 (2013). https://doi.org/10.1051/0004-6361/201322231 ADSCrossRefGoogle Scholar
  333. Navarro, J., Polls, A.: Spin instabilities of infinite nuclear matter and effective tensor interactions. Phys. Rev. C 87(4), 044329 (2013).  https://doi.org/10.1103/PhysRevC.87.044329 ADSCrossRefGoogle Scholar
  334. Navarro, J., Guardiola, R., Moliner, I.: The Coupled Cluster Method and Its Applications, pp. 121–178. World Scientific, Singapore (2002). https://doi.org/10.1142/9789812777072_0003 Google Scholar
  335. Negele, J.W., Vautherin, D.: Neutron star matter at sub-nuclear densities. Nucl. Phys. A 207, 298–320 (1973). https://doi.org/10.1016/0375-9474(73)90349-7 ADSCrossRefGoogle Scholar
  336. Newton, W.G., Stone, J.R.: Modeling nuclear “pasta” and the transition to uniform nuclear matter with the 3D Skyrme-Hartree-Fock method at finite temperature: core-collapse supernovae. Phys. Rev. C 79(5), 055801 (2009).  https://doi.org/10.1103/PhysRevC.79.055801 ADSCrossRefGoogle Scholar
  337. Newton, W.G., Murphy, K., Hooker, J., Li, B.A.: The cooling of the Cassiopeia A neutron star as a probe of the nuclear symmetry energy and nuclear pasta. Astrophys. J. Lett. 779, L4 (2013). https://doi.org/10.1088/2041-8205/779/1/L4 ADSCrossRefGoogle Scholar
  338. Nikolaus, B.A., Hoch, T., Madland, D.G.: Nuclear ground state properties in a relativistic point coupling model. Phys. Rev. C 46, 1757–1781 (1992).  https://doi.org/10.1103/PhysRevC.46.1757 ADSCrossRefGoogle Scholar
  339. Nikšić, T., Vretenar, D., Finelli, P., Ring, P.: Relativistic Hartree-Bogoliubov model with density-dependent meson-nucleon couplings. Phys. Rev. C 66(2), 024306 (2002).  https://doi.org/10.1103/PhysRevC.66.024306 ADSCrossRefGoogle Scholar
  340. Nikšić, T., Vretenar, D., Lalazissis, G.A., Ring, P.: Finite- to zero-range relativistic mean-field interactions. Phys. Rev. C 77(3), 034302 (2008).  https://doi.org/10.1103/PhysRevC.77.034302 ADSCrossRefGoogle Scholar
  341. Nikšić, T., Vretenar, D., Ring, P.: Relativistic nuclear energy density functionals: mean-field and beyond. Prog. Part. Nucl. Phys. 66, 519–548 (2011). https://doi.org/10.1016/j.ppnp.2011.01.055 ADSCrossRefGoogle Scholar
  342. Nishimura, N., Fischer, T., Thielemann, F.K., Fröhlich, C., Hempel, M., Käppeli, R., Martínez-Pinedo, G., Rauscher, T., Sagert, I., Winteler, C.: Nucleosynthesis in core-collapse supernova explosions triggered by a quark-hadron phase transition. Astrophys. J. 758, 9 (2012). https://doi.org/10.1088/0004-637X/758/1/9 ADSCrossRefGoogle Scholar
  343. O’Connor, E., Ott, C.D.: Black hole formation in failing core-collapse supernovae. Astrophys. J. 730, 70 (2011). https://doi.org/10.1088/0004-637X/730/2/70 ADSCrossRefGoogle Scholar
  344. Oertel, M., Fantina, A.F., Novak, J.: Extended equation of state for core-collapse simulations. Phys. Rev. C 85(5), 055806 (2012).  https://doi.org/10.1103/PhysRevC.85.055806 ADSCrossRefGoogle Scholar
  345. Oertel, M., Gulminelli, F., Providência, C., Raduta, A.R.: Hyperons in neutron stars and supernova cores. Eur. Phys. J. A 52, 50 (2016).  https://doi.org/10.1140/epja/i2016-16050-1 ADSCrossRefGoogle Scholar
  346. Oertel, M., Hempel, M., Klähn, T., Typel, S.: Equations of state for supernovae and compact stars. Rev. Mod. Phys. 89(1), 015007 (2017).  https://doi.org/10.1103/RevModPhys.89.015007 ADSCrossRefGoogle Scholar
  347. Ofengeim, D.D., Kaminker, A.D., Klochkov, D., Suleimanov, V., Yakovlev, D.G.: Analysing neutron star in HESS J1731-347 from thermal emission and cooling theory. Mon. Not. R. Astron. Soc. 454, 2668–2676 (2015).  https://doi.org/10.1093/mnras/stv2204 ADSCrossRefGoogle Scholar
  348. Oka, M., Yazaki, K.: Nuclear force in a quark model. Phys. Lett. B 90, 41–44 (1980). https://doi.org/10.1016/0370-2693(80)90046-5 ADSCrossRefGoogle Scholar
  349. Oka, M., Shimizu, K., Yazaki, K.: Hyperon-nucleon and hyperon-hyperon interaction in a quark model. Nucl. Phys. A 464, 700–716 (1987). https://doi.org/10.1016/0375-9474(87)90371-X ADSCrossRefGoogle Scholar
  350. Okamoto, M., Maruyama, T., Yabana, K., Tatsumi, T.: Three-dimensional structure of low-density nuclear matter. Phys. Lett. B 713, 284–288 (2012). https://doi.org/10.1016/j.physletb.2012.05.046 ADSCrossRefGoogle Scholar
  351. Onsi, M., Dutta, A.K., Chatri, H., Goriely, S., Chamel, N., Pearson, J.M.: Semi-classical equation of state and specific-heat expressions with proton shell corrections for the inner crust of a neutron star. Phys. Rev. C 77(6), 065805 (2008).  https://doi.org/10.1103/PhysRevC.77.065805 ADSCrossRefGoogle Scholar
  352. Oppenheimer, J.R., Volkoff, G.M.: On massive neutron cores. Phys. Rev. 55, 374–381 (1939).  https://doi.org/10.1103/PhysRev.55.374 ADSzbMATHCrossRefGoogle Scholar
  353. Ott, C.D., O’Connor, E., Peng, F., Reisswig, C., Sperhake, U., Schnetter, E., Abdikamalov, E., Diener, P., Löffler, F., Hawke, I., Meakin, C.A., Burrows, A.: New open-source approaches to the modeling of stellar collapse and the formation of black holes. Astrophys. Space Sci. 336, 151–156 (2011). https://doi.org/10.1007/s10509-010-0553-1 ADSCrossRefGoogle Scholar
  354. Oyamatsu, K., Iida, K.: Symmetry energy at subnuclear densities and nuclei in neutron star crusts. Phys. Rev. C 75(1), 015801 (2007).  https://doi.org/10.1103/PhysRevC.75.015801 ADSCrossRefGoogle Scholar
  355. Özel, F., Freire, P.: Masses, radii, and the equation of state of neutron stars. Annu. Rev. Astron. Astrophys. 54, 401–440 (2016).  https://doi.org/10.1146/annurev-astro-081915-023322 ADSCrossRefGoogle Scholar
  356. Özel, F., Psaltis, D., Güver, T., Baym, G., Heinke, C., Guillot, S.: The dense matter equation of state from neutron star radius and mass measurements. Astrophys. J. 820, 28 (2016). https://doi.org/10.3847/0004-637X/820/1/28 ADSCrossRefGoogle Scholar
  357. Paar, N., Moustakidis, C.C., Marketin, T., Vretenar, D., Lalazissis, G.A.: Neutron star structure and collective excitations of finite nuclei. Phys. Rev. C 90(1), 011304 (2014).  https://doi.org/10.1103/PhysRevC.90.011304 ADSCrossRefGoogle Scholar
  358. Page, D., Reddy, S.: Dense matter in compact stars: theoretical developments and observational constraints. Annu. Rev. Nucl. Part. Sci. 56, 327–374 (2006).  https://doi.org/10.1146/annurev.nucl.56.080805.140600 ADSCrossRefGoogle Scholar
  359. Page, D., Geppert, U., Weber, F.: The cooling of compact stars. Nucl. Phys. A 777, 497–530 (2006). https://doi.org/10.1016/j.nuclphysa.2005.09.019 ADSCrossRefGoogle Scholar
  360. Page, D., Lattimer, J.M., Prakash, M., Steiner, A.W.: Neutrino emission from cooper pairs and minimal cooling of neutron stars. Astrophys. J. 707, 1131–1140 (2009). https://doi.org/10.1088/0004-637X/707/2/1131 ADSCrossRefGoogle Scholar
  361. Page, D., Prakash, M., Lattimer, J.M., Steiner, A.W.: Rapid cooling of the neutron star in Cassiopeia A triggered by neutron superfluidity in dense matter. Phys. Rev. Lett. 106(8), 081101 (2011).  https://doi.org/10.1103/PhysRevLett.106.081101 ADSCrossRefGoogle Scholar
  362. Pais, H., Stone, J.R.: Exploring the nuclear pasta phase in core-collapse supernova matter. Phys. Rev. Lett. 109(15), 151101 (2012).  https://doi.org/10.1103/PhysRevLett.109.151101 ADSCrossRefGoogle Scholar
  363. Pais, H., Newton, W.G., Stone, J.R.: Phase transitions in core-collapse supernova matter at sub-saturation densities. Phys. Rev. C 90(6), 065802 (2014).  https://doi.org/10.1103/PhysRevC.90.065802 ADSCrossRefGoogle Scholar
  364. Pais, H., Chiacchiera, S., Providência, C.: Light clusters, pasta phases, and phase transitions in core-collapse supernova matter. Phys. Rev. C 91(5), 055801 (2015).  https://doi.org/10.1103/PhysRevC.91.055801 ADSCrossRefGoogle Scholar
  365. Palenzuela, C., Liebling, S.L., Neilsen, D., Lehner, L., Caballero, O.L., O’Connor, E., Anderson, M.: Effects of the microphysical equation of state in the mergers of magnetized neutron stars with neutrino cooling. Phys. Rev. D 92(4), 044045 (2015).  https://doi.org/10.1103/PhysRevD.92.044045 ADSCrossRefGoogle Scholar
  366. Pandharipande, V.R., Wiringa, R.B.: Variations on a theme of nuclear matter. Rev. Mod. Phys. 51, 821–860 (1979).  https://doi.org/10.1103/RevModPhys.51.821 ADSCrossRefGoogle Scholar
  367. Papakonstantinou, P., Margueron, J., Gulminelli, F., Raduta, A.R.: Densities and energies of nuclei in dilute matter at zero temperature. Phys. Rev. C 88(4), 045805 (2013).  https://doi.org/10.1103/PhysRevC.88.045805 ADSCrossRefGoogle Scholar
  368. Pastore, A., Martini, M., Davesne, D., Navarro, J., Goriely, S., Chamel, N.: Linear response theory and neutrino mean free path using Brussels-Montreal Skyrme functionals. Phys. Rev. C 90(2), 025804 (2014).  https://doi.org/10.1103/PhysRevC.90.025804 ADSCrossRefGoogle Scholar
  369. Pastore, A., Tarpanov, D., Davesne, D., Navarro, J.: Spurious finite-size instabilities in nuclear energy density functionals: spin channel. Phys. Rev. C 92(2), 024305 (2015).  https://doi.org/10.1103/PhysRevC.92.024305 ADSCrossRefGoogle Scholar
  370. Pearson, J.M., Chamel, N., Goriely, S., Ducoin, C.: Inner crust of neutron stars with mass-fitted Skyrme functionals. Phys. Rev. C 85(6), 065803 (2012).  https://doi.org/10.1103/PhysRevC.85.065803 ADSCrossRefGoogle Scholar
  371. Pearson, J.M., Chamel, N., Pastore, A., Goriely, S.: Role of proton pairing in a semimicroscopic treatment of the inner crust of neutron stars. Phys. Rev. C 91(1), 018801 (2015).  https://doi.org/10.1103/PhysRevC.91.018801 ADSCrossRefGoogle Scholar
  372. Peres, B., Oertel, M., Novak, J.: Influence of pions and hyperons on stellar black hole formation. Phys. Rev. D 87(4), 043006 (2013).  https://doi.org/10.1103/PhysRevD.87.043006 ADSCrossRefGoogle Scholar
  373. Piekarewicz, J.: Unmasking the nuclear matter equation of state. Phys. Rev. C 69(4), 041301 (2004).  https://doi.org/10.1103/PhysRevC.69.041301 ADSCrossRefGoogle Scholar
  374. Pieper, S.C.: The Illinois extension to the Fujita-Miyazawa three-nucleon force. In: Sakai, H., Sekiguchi, K., Gibson, B.F. (eds.) New Facet of Three Nucleon Force - 50 Years of Fujita Miyazawa. American Institute of Physics Conference Series, vol. 1011, pp. 143–152. American Institute of Physics, College Park (2008). https://doi.org/10.1063/1.2932280 Google Scholar
  375. Pieper, S.C., Pandharipande, V.R., Wiringa, R.B., Carlson, J.: Realistic models of pion-exchange three-nucleon interactions. Phys. Rev. C 64(1), 014001 (2001).  https://doi.org/10.1103/PhysRevC.64.014001 ADSCrossRefGoogle Scholar
  376. Podsiadlowski, P., Dewi, J.D.M., Lesaffre, P., Miller, J.C., Newton, W.G., Stone, J.R.: The double pulsar J0737-3039: testing the neutron star equation of state. Mon. Not. R. Astron. Soc. 361, 1243–1249 (2005). https://doi.org/10.1111/j.1365-2966.2005.09253.x ADSCrossRefGoogle Scholar
  377. Posselt, B., Pavlov, G.G., Suleimanov, V., Kargaltsev, O.: New constraints on the cooling of the Central Compact Object in Cas A. Astrophys. J. 779, 186 (2013). https://doi.org/10.1088/0004-637X/779/2/186 ADSCrossRefGoogle Scholar
  378. Potekhin, A.Y.: Atmospheres and radiating surfaces of neutron stars. Phys. Usp. 57, 735–770 (2014).  https://doi.org/10.3367/UFNe.0184.201408a.0793 ADSCrossRefGoogle Scholar
  379. Potekhin, A.Y., Pons, J.A., Page, D.: Neutron stars-cooling and transport. Space Sci. Rev. 191, 239–291 (2015). https://doi.org/10.1007/s11214-015-0180-9 ADSCrossRefGoogle Scholar
  380. Poutanen, J., Nättilä, J., Kajava, J.J.E., Latvala, O.M., Galloway, D.K., Kuulkers, E., Suleimanov, V.F.: The effect of accretion on the measurement of neutron star mass and radius in the low-mass X-ray binary 4U 1608-52. Mon. Not. R. Astron. Soc. 442, 3777–3790 (2014).  https://doi.org/10.1093/mnras/stu1139 ADSCrossRefGoogle Scholar
  381. Pudliner, B.S., Pandharipande, V.R., Carlson, J., Wiringa, R.B.: Quantum Monte Carlo calculations of A ≤ 6 nuclei. Phys. Rev. Lett. 74, 4396–4399 (1995).  https://doi.org/10.1103/PhysRevLett.74.4396 ADSCrossRefGoogle Scholar
  382. Pudliner, B.S., Pandharipande, V.R., Carlson, J., Pieper, S.C., Wiringa, R.B.: Quantum Monte Carlo calculations of nuclei with A ≤ 7. Phys. Rev. C 56, 1720–1750 (1997).  https://doi.org/10.1103/PhysRevC.56.1720 ADSCrossRefGoogle Scholar
  383. Raduta, A.R., Gulminelli, F.: Thermodynamics of clusterized matter. Phys. Rev. C 80(2), 024606 (2009).  https://doi.org/10.1103/PhysRevC.80.024606 ADSCrossRefGoogle Scholar
  384. Raduta, A.R., Gulminelli, F.: Statistical description of complex nuclear phases in supernovae and proto-neutron stars. Phys. Rev. C 82(6), 065801 (2010).  https://doi.org/10.1103/PhysRevC.82.065801 ADSCrossRefGoogle Scholar
  385. Raduta, A.R., Aymard, F., Gulminelli, F.: Clusterized nuclear matter in the (proto-)neutron star crust and the symmetry energy. Eur. Phys. J. A 50, 24 (2014). http://dx.doi.org/10.1140/epja/i2014-14024-yADSCrossRefGoogle Scholar
  386. Raduta, A.R., Gulminelli, F., Oertel, M.: Modification of magicity toward the dripline and its impact on electron-capture rates for stellar core collapse. Phys. Rev. C 93(2), 025803 (2016).  https://doi.org/10.1103/PhysRevC.93.025803 ADSCrossRefGoogle Scholar
  387. Raduta, A.R., Gulminelli, F., Oertel, M.: Stellar electron capture rates on neutron-rich nuclei and their impact on stellar core collapse. Phys. Rev. C 95(2), 025805 (2017).  https://doi.org/10.1103/PhysRevC.95.025805 ADSCrossRefGoogle Scholar
  388. Ravenhall, D.G., Pethick, C.J., Wilson, J.R.: Structure of matter below nuclear saturation density. Phys. Rev. Lett. 50, 2066–2069 (1983).  https://doi.org/10.1103/PhysRevLett.50.2066 ADSCrossRefGoogle Scholar
  389. Read, J.S., Lackey, B.D., Owen, B.J., Friedman, J.L.: Constraints on a phenomenologically parametrized neutron-star equation of state. Phys. Rev. D 79(12), 124032 (2009).  https://doi.org/10.1103/PhysRevD.79.124032 ADSCrossRefGoogle Scholar
  390. Read, J.S., Baiotti, L., Creighton, J.D.E., Friedman, J.L., Giacomazzo, B., Kyutoku, K., Markakis, C., Rezzolla, L., Shibata, M., Taniguchi, K.: Matter effects on binary neutron star waveforms. Phys. Rev. D 88(4), 044042 (2013).  https://doi.org/10.1103/PhysRevD.88.044042 ADSCrossRefGoogle Scholar
  391. Reinhard, P.G., Nazarewicz, W.: Information content of the low-energy electric dipole strength: Correlation analysis. Phys. Rev. C 87(1), 014324 (2013).  https://doi.org/10.1103/PhysRevC.87.014324 ADSCrossRefGoogle Scholar
  392. Rezzolla, L., Takami, K.: Gravitational-wave signal from binary neutron stars: a systematic analysis of the spectral properties. Phys. Rev. D 93(12), 124051 (2016).  https://doi.org/10.1103/PhysRevD.93.124051 ADSCrossRefGoogle Scholar
  393. Rezzolla, L., Most, E.R., Weih, L.R.: Using gravitational-wave observations and quasi-universal relations to constrain the maximum mass of neutron stars. Astrophys. J. Lett. 852, L25 (2018). https://doi.org/10.3847/2041-8213/aaa401 ADSCrossRefGoogle Scholar
  394. Richers, S., Ott, C.D., Abdikamalov, E., O’Connor, E., Sullivan, C.: Equation of state effects on gravitational waves from rotating core collapse. Phys. Rev. D 95(6), 063019 (2017).  https://doi.org/10.1103/PhysRevD.95.063019 ADSCrossRefGoogle Scholar
  395. Rijken, T.A., Stoks, V.G.J., Yamamoto, Y.: Soft-core hyperon-nucleon potentials. Phys. Rev. C 59, 21–40 (1999).  https://doi.org/10.1103/PhysRevC.59.21 ADSCrossRefGoogle Scholar
  396. Rikovska Stone, J., Stevenson, P.D., Miller, J.C., Strayer, M.R.: Nuclear matter and neutron star properties calculated with a separable monopole interaction. Phys. Rev. C 65(6), 064312 (2002).  https://doi.org/10.1103/PhysRevC.65.064312 ADSCrossRefGoogle Scholar
  397. Ring, P., Schuck, P.: The Nuclear Many-Body Problem. Physics and Astronomy Online Library. Springer, Berlin (2004). https://www.springer.com/fr/book/9783540212065
  398. Rios, A., Polls, A., Ramos, A., Müther, H.: Entropy of a correlated system of nucleons. Phys. Rev. C 74(5), 054317 (2006).  https://doi.org/10.1103/PhysRevC.74.054317 ADSCrossRefGoogle Scholar
  399. Rios, A., Polls, A., Ramos, A., Müther, H.: Liquid-gas phase transition in nuclear matter from realistic many-body approaches. Phys. Rev. C 78(4), 044314 (2008).  https://doi.org/10.1103/PhysRevC.78.044314 ADSCrossRefGoogle Scholar
  400. Roca-Maza, X., Viñas, X., Centelles, M., Ring, P., Schuck, P.: Relativistic mean-field interaction with density-dependent meson-nucleon vertices based on microscopical calculations. Phys. Rev. C 84(5), 054309 (2011).  https://doi.org/10.1103/PhysRevC.84.054309 ADSCrossRefGoogle Scholar
  401. Roca-Maza, X., Viñas, X., Centelles, M., Agrawal, B.K., Colò, G., Paar, N., Piekarewicz, J., Vretenar, D.: Neutron skin thickness from the measured electric dipole polarizability in 68Ni 120Sn and 208Pb. Phys. Rev. C 92(6), 064304 (2015).  https://doi.org/10.1103/PhysRevC.92.064304 ADSCrossRefGoogle Scholar
  402. Roggero, A., Mukherjee, A., Pederiva, F.: Quantum Monte Carlo calculations of neutron matter with nonlocal chiral interactions. Phys. Rev. Lett. 112(22), 221103 (2014).  https://doi.org/10.1103/PhysRevLett.112.221103 ADSCrossRefGoogle Scholar
  403. Röpke, G.: Parametrization of light nuclei quasiparticle energy shifts and composition of warm and dense nuclear matter. Nucl. Phys. A 867, 66–80 (2011). https://doi.org/10.1016/j.nuclphysa.2011.07.010 ADSCrossRefGoogle Scholar
  404. Röpke, G.: Nuclear matter equation of state including two-, three-, and four-nucleon correlations. Phys. Rev. C 92(5), 054001 (2015).  https://doi.org/10.1103/PhysRevC.92.054001 ADSCrossRefGoogle Scholar
  405. Röpke, G., Münchow, L., Schulz, H.: Particle clustering and Mott transitions in nuclear matter at finite temperature (I). Method and general aspects. Nucl. Phys. A 379, 536–552 (1982). https://doi.org/10.1016/0375-9474(82)90013-6 ADSCrossRefGoogle Scholar
  406. Röpke, G., Schmidt, M., Münchow, L., Schulz, H.: Particle clustering and Mott transition in nuclear matter at finite temperature (II) Self-consistent ladder Hartree-Fock approximation and model calculations for cluster abundances and the phase diagram. Nucl. Phys. A 399, 587–602 (1983). https://doi.org/10.1016/0375-9474(83)90265-8 ADSCrossRefGoogle Scholar
  407. Röpke, G., Bastian, N.U., Blaschke, D., Klähn, T., Typel, S., Wolter, H.H.: Cluster-virial expansion for nuclear matter within a quasiparticle statistical approach. Nucl. Phys. A 897, 70–92 (2013). https://doi.org/10.1016/j.nuclphysa.2012.10.005 ADSCrossRefGoogle Scholar
  408. Rosswog, S.: The multi-messenger picture of compact binary mergers. Int. J. Mod. Phys. D 24, 1530012 (2015). https://doi.org/10.1142/S0218271815300128 ADSMathSciNetCrossRefGoogle Scholar
  409. Rusnak, J.J., Furnstahl, R.J.: Relativistic point-coupling models as effective theories of nuclei. Nucl. Phys. A 627, 495–521 (1997). https://doi.org/10.1016/S0375-9474(97)00598-8 ADSCrossRefGoogle Scholar
  410. Russotto, P., Gannon, S., Kupny, S., Lasko, P., Acosta, L., Adamczyk, M., Al-Ajlan, A., Al-Garawi, M., Al-Homaidhi, S., Amorini, F., et al.: Results of the ASY-EOS experiment at GSI: the symmetry energy at suprasaturation density. Phys. Rev. C 94(3), 034608 (2016).  https://doi.org/10.1103/PhysRevC.94.034608 ADSCrossRefGoogle Scholar
  411. Sagert, I., Fischer, T., Hempel, M., Pagliara, G., Schaffner-Bielich, J., Mezzacappa, A., Thielemann, F.K., Liebendörfer, M.: Signals of the QCD phase transition in core-collapse supernovae. Phys. Rev. Lett. 102(8), 081101 (2009).  https://doi.org/10.1103/PhysRevLett.102.081101 ADSzbMATHCrossRefGoogle Scholar
  412. Sagert, I., Fischer, T., Hempel, M., Pagliara, G., Schaffner-Bielich, J., Thielemann, F.K., Liebendörfer, M.: Strange quark matter in explosive astrophysical systems. J. Phys. G: Nucl. Part. Phys. 37(9), 094064 (2010). https://doi.org/10.1088/0954-3899/37/9/094064 ADSzbMATHCrossRefGoogle Scholar
  413. Sagert, I., Tolos, L., Chatterjee, D., Schaffner-Bielich, J., Sturm, C.: Soft nuclear equation-of-state from heavy-ion data and implications for compact stars. Phys. Rev. C 86(4), 045802 (2012).  https://doi.org/10.1103/PhysRevC.86.045802 ADSCrossRefGoogle Scholar
  414. Sagert, I., Fann, G.I., Fattoyev, F.J., Postnikov, S., Horowitz, C.J.: Quantum simulations of nuclei and nuclear pasta with the multiresolution adaptive numerical environment for scientific simulations. Phys. Rev. C 93(5), 055801 (2016).  https://doi.org/10.1103/PhysRevC.93.055801 ADSCrossRefGoogle Scholar
  415. Sammarruca, F., Coraggio, L., Holt, J.W., Itaco, N., Machleidt, R., Marcucci, L.E.: Toward order-by-order calculations of the nuclear and neutron matter equations of state in chiral effective field theory. Phys. Rev. C 91(5), 054311 (2015).  https://doi.org/10.1103/PhysRevC.91.054311 ADSCrossRefGoogle Scholar
  416. Schaffner-Bielich, J., Gal, A.: Properties of strange hadronic matter in bulk and in finite systems. Phys. Rev. C 62(3), 034311 (2000).  https://doi.org/10.1103/PhysRevC.62.034311 ADSCrossRefGoogle Scholar
  417. Schaffner-Bielich, J., Hanauske, M., Stöcker, H., Greiner, W.: Phase transition to hyperon matter in neutron stars. Phys. Rev. Lett. 89(17), 171101 (2002).  https://doi.org/10.1103/PhysRevLett.89.171101 ADSCrossRefGoogle Scholar
  418. Scheidegger, S., Käppeli, R., Whitehouse, S.C., Fischer, T., Liebendörfer, M.: The influence of model parameters on the prediction of gravitational wave signals from stellar core collapse. Astron. Astrophys. 514, A51 (2010). https://doi.org/10.1051/0004-6361/200913220 ADSCrossRefGoogle Scholar
  419. Schmidt, K.E., Kalos, M.H.: Few- and many-fermion problems. In: Binder, K. (ed.) Applications of the Monte Carlo Method in Statistical Physics. Topics in Current Physics, vol. 36, pp. 125–143. Springer, Berlin (1987). ISBN: 978-3-540-17650-3; https://doi.org/10.1007/978-3-642-51703-7_4 CrossRefGoogle Scholar
  420. Schneider, A.S., Berry, D.K., Briggs, C.M., Caplan, M.E., Horowitz, C.J.: Nuclear “waffles”. Phys. Rev. C 90(5), 055805 (2014).  https://doi.org/10.1103/PhysRevC.90.055805 ADSCrossRefGoogle Scholar
  421. Schuetrumpf, B., Klatt, M.A., Iida, K., Maruhn, J.A., Mecke, K., Reinhard, P.G.: Time-dependent Hartree-Fock approach to nuclear “pasta” at finite temperature. Phys. Rev. C 87(5), 055805 (2013).  https://doi.org/10.1103/PhysRevC.87.055805 ADSCrossRefGoogle Scholar
  422. Schulze, H.J., Rijken, T.: Maximum mass of hyperon stars with the Nijmegen ESC08 model. Phys. Rev. C 84(3), 035801 (2011).  https://doi.org/10.1103/PhysRevC.84.035801 ADSCrossRefGoogle Scholar
  423. Sébille, F., Figerou, S., de la Mota, V.: Self-consistent dynamical mean-field investigation of exotic structures in isospin-asymmetric nuclear matter. Nucl. Phys. A 822, 51–73 (2009). https://doi.org/10.1016/j.nuclphysa.2009.02.013 ADSCrossRefGoogle Scholar
  424. Sébille, F., de La Mota, V., Figerou, S.: Probing the microscopic nuclear matter self-organization processes in the neutron star crust. Phys. Rev. C 84(5), 055801 (2011).  https://doi.org/10.1103/PhysRevC.84.055801 ADSCrossRefGoogle Scholar
  425. Sedrakian, A.: Rapid cooling of Cassiopeia A as a phase transition in dense QCD. Astron. Astrophys. 555, L10 (2013). https://doi.org/10.1051/0004-6361/201321541 ADSCrossRefGoogle Scholar
  426. Sekiguchi, Y., Kiuchi, K., Kyutoku, K., Shibata, M.: Effects of hyperons in binary neutron star mergers. Phys. Rev. Lett. 107(21), 211101 (2011).  https://doi.org/10.1103/PhysRevLett.107.211101 ADSzbMATHCrossRefGoogle Scholar
  427. Sellahewa, R., Rios, A.: Isovector properties of the Gogny interaction. Phys. Rev. C 90(5), 054327 (2014).  https://doi.org/10.1103/PhysRevC.90.054327 ADSCrossRefGoogle Scholar
  428. Serot, B.D.: Quantum hadrodynamics. Rep. Prog. Phys. 55, 1855–1946 (1992). https://doi.org/10.1088/0034-4885/55/11/001 ADSCrossRefGoogle Scholar
  429. Serot, B.D., Walecka, J.D.: The relativistic nuclear many body problem. Adv. Nucl. Phys. 16, 1–327 (1986)Google Scholar
  430. Sharma, B.K., Centelles, M., Viñas, X., Baldo, M., Burgio, G.F.: Unified equation of state for neutron stars on a microscopic basis. Astron. Astrophys. 584, A103 (2015). https://doi.org/10.1051/0004-6361/201526642 ADSCrossRefGoogle Scholar
  431. Shen, H., Toki, H., Oyamatsu, K., Sumiyoshi, K.: Relativistic equation of state of nuclear matter for supernova and neutron star. Nucl. Phys. A 637, 435–450 (1998a). https://doi.org/10.1016/S0375-9474(98)00236-X ADSCrossRefGoogle Scholar
  432. Shen, H., Toki, H., Oyamatsu, K., Sumiyoshi, K.: Relativistic equation of state of nuclear matter for supernova explosion. Prog. Theor. Phys. 100, 1013–1031 (1998b).  https://doi.org/10.1143/PTP.100.1013 ADSCrossRefGoogle Scholar
  433. Shen, G., Horowitz, C.J., Teige, S.: Equation of state of dense matter from a density dependent relativistic mean field model. Phys. Rev. C 82(1), 015806 (2010a).  https://doi.org/10.1103/PhysRevC.82.015806 ADSCrossRefGoogle Scholar
  434. Shen, G., Horowitz, C.J., Teige, S.: Equation of state of nuclear matter in a virial expansion of nucleons and nuclei. Phys. Rev. C 82(4), 045802 (2010b).  https://doi.org/10.1103/PhysRevC.82.045802 ADSCrossRefGoogle Scholar
  435. Shen, G., Horowitz, C.J., O’Connor, E.: Second relativistic mean field and virial equation of state for astrophysical simulations. Phys. Rev. C 83(6), 065808 (2011a).  https://doi.org/10.1103/PhysRevC.83.065808 ADSCrossRefGoogle Scholar
  436. Shen, G., Horowitz, C.J., Teige, S.: New equation of state for astrophysical simulations. Phys. Rev. C 83(3), 035802 (2011b).  https://doi.org/10.1103/PhysRevC.83.035802 ADSCrossRefGoogle Scholar
  437. Shen, H., Toki, H., Oyamatsu, K., Sumiyoshi, K.: Relativistic equation of state for core-collapse supernova simulations. Astrophys. J. Suppl. Ser. 197, 20 (2011c). https://doi.org/10.1088/0067-0049/197/2/20 ADSCrossRefGoogle Scholar
  438. Shibata, M., Taniguchi, K.: Coalescence of black hole-neutron star binaries. Living Rev. Relativ. 14, 6 (2011).  https://doi.org/10.12942/lrr-2011-6 ADSCrossRefGoogle Scholar
  439. Shimizu, K.: Study of baryon baryon interactions and nuclear properties in the quark cluster model. Rep. Prog. Phys. 52, 1–56 (1989). https://doi.org/10.1088/0034-4885/52/1/001 ADSCrossRefGoogle Scholar
  440. Shternin, P.S., Yakovlev, D.G.: A young cooling neutron star in the remnant of Supernova 1987A. Astron. Lett. 34, 675–685 (2008). https://doi.org/10.1134/S1063773708100034 ADSCrossRefGoogle Scholar
  441. Shternin, P.S., Yakovlev, D.G., Heinke, C.O., Ho, W.C.G., Patnaude, D.J.: Cooling neutron star in the Cassiopeia A supernova remnant: evidence for superfluidity in the core. Mon. Not. R. Astron. Soc. 412, L108–L112 (2011). https://doi.org/10.1111/j.1745-3933.2011.01015.x ADSCrossRefGoogle Scholar
  442. Skyrme, T.H.R.: CVII. The nuclear surface. Philos. Mag. 1, 1043–1054 (1956). https://doi.org/10.1080/14786435608238186 Google Scholar
  443. Somà, V., Barbieri, C., Duguet, T.: Ab initio Gorkov-Green’s function calculations of open-shell nuclei. Phys. Rev. C 87(1), 011303 (2013).  https://doi.org/10.1103/PhysRevC.87.011303 ADSCrossRefGoogle Scholar
  444. Song, H.Q., Baldo, M., Giansiracusa, G., Lombardo, U.: Bethe-Brueckner-Goldstone expansion in nuclear matter. Phys. Rev. Lett. 81, 1584–1587 (1998).  https://doi.org/10.1103/PhysRevLett.81.1584 ADSCrossRefGoogle Scholar
  445. Sotani, H., Nakazato, K., Iida, K., Oyamatsu, K.: Probing the equation of state of nuclear matter via neutron star asteroseismology. Phys. Rev. Lett. 108(20), 201101 (2012).  https://doi.org/10.1103/PhysRevLett.108.201101 ADSCrossRefGoogle Scholar
  446. Steiner, A.W., Watts, A.L.: Constraints on neutron star crusts from oscillations in giant flares. Phys. Rev. Lett. 103(18), 181101 (2009).  https://doi.org/10.1103/PhysRevLett.103.181101 ADSCrossRefGoogle Scholar
  447. Steiner, A.W., Lattimer, J.M., Brown, E.F.: The equation of state from observed masses and radii of neutron stars. Astrophys. J. 722, 33–54 (2010). https://doi.org/10.1088/0004-637X/722/1/33 ADSCrossRefGoogle Scholar
  448. Steiner, A.W., Hempel, M., Fischer, T.: Core-collapse supernova equations of state based on neutron star observations. Astrophys. J. 774, 17 (2013a). https://doi.org/10.1088/0004-637X/774/1/17 ADSCrossRefGoogle Scholar
  449. Steiner, A.W., Lattimer, J.M., Brown, E.F.: The neutron star mass-radius relation and the equation of state of dense matter. Astrophys. J. Lett. 765, L5 (2013b). https://doi.org/10.1088/2041-8205/765/1/L5 ADSCrossRefGoogle Scholar
  450. Stergioulas, N.: Rotating stars in relativity. Living Rev. Relativ. 6, 3 (2003).  https://doi.org/10.12942/lrr-2003-3 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  451. Stevenson, P., Strayer, M.R., Rikovska Stone, J.: Many-body perturbation calculation of spherical nuclei with a separable monopole interaction. Phys. Rev. C 63(5), 054309 (2001).  https://doi.org/10.1103/PhysRevC.63.054309 ADSCrossRefGoogle Scholar
  452. Stevenson, P.D., Goddard, P.M., Stone, J.R., Dutra, M.: Do Skyrme forces that fit nuclear matter work well in finite nuclei? In: American Institute of Physics Conference Series, vol. 1529, pp. 262–268 (2013). https://doi.org/10.1063/1.4807465 ADSGoogle Scholar
  453. Stoks, V.G.J., Klomp, R.A.M., Terheggen, C.P.F., de Swart, J.J.: Construction of high-quality NN potential models. Phys. Rev. C 49, 2950–2962 (1994).  https://doi.org/10.1103/PhysRevC.49.2950 ADSCrossRefGoogle Scholar
  454. Stone, J.R., Reinhard, P.G.: The Skyrme interaction in finite nuclei and nuclear matter. Prog. Part. Nucl. Phys. 58, 587–657 (2007). https://doi.org/10.1016/j.ppnp.2006.07.001 ADSCrossRefGoogle Scholar
  455. Stone, J.R., Stone, N.J., Moszkowski, S.A.: Incompressibility in finite nuclei and nuclear matter. Phys. Rev. C 89(4), 044316 (2014).  https://doi.org/10.1103/PhysRevC.89.044316 ADSCrossRefGoogle Scholar
  456. Sturm, C., Böttcher, I., Dȩbowski, M., Förster, A., Grosse, E., Koczoń, P., Kohlmeyer, B., Laue, F., Mang, M., Naumann, L., Oeschler, H., Pühlhofer, F., Schwab, E., Senger, P., Shin, Y., Speer, J., Ströbele, H., Surówka, G., Uhlig, F., Wagner, A., Waluś, W.: Evidence for a soft nuclear equation-of-state from kaon production in heavy-ion collisions. Phys. Rev. Lett. 86, 39–42 (2001).  https://doi.org/10.1103/PhysRevLett.86.39 ADSCrossRefGoogle Scholar
  457. Sugahara, Y., Toki, H.: Relativistic mean-field theory for unstable nuclei with non-linear σ and ω terms. Nucl. Phys. A 579, 557–572 (1994). https://doi.org/10.1016/0375-9474(94)90923-7 ADSCrossRefGoogle Scholar
  458. Sullivan, C., O’Connor, E., Zegers, R.G.T., Grubb, T., Austin, S.M.: The sensitivity of core-collapse supernovae to nuclear electron capture. Astrophys. J. 816, 44 (2016). https://doi.org/10.3847/0004-637X/816/1/44 ADSCrossRefGoogle Scholar
  459. Sumiyoshi, K.: Influence of equation of state in supernova simulations: neutrinos from proto-neutron star and black hole formation. Prog. Theor. Phys. Suppl. 168, 610–613 (2007).  https://doi.org/10.1143/PTPS.168.610 ADSCrossRefGoogle Scholar
  460. Sumiyoshi, K., Oyamatsu, K., Toki, H.: Neutron star profiles in the relativistic Brueckner-Hartree-Fock theory. Nucl. Phys. A 595, 327–345 (1995). https://doi.org/10.1016/0375-9474(95)00388-5 ADSCrossRefGoogle Scholar
  461. Sumiyoshi, K., Yamada, S., Suzuki, H., Shen, H., Chiba, S., Toki, H.: Postbounce evolution of core-collapse supernovae: long-term effects of the equation of state. Astrophys. J. 629, 922–932 (2005). https://doi.org/10.1086/431788 ADSCrossRefGoogle Scholar
  462. Sumiyoshi, K., Yamada, S., Suzuki, H.: Dynamics and neutrino signal of black hole formation in nonrotating failed supernovae. I. Equation of state dependence. Astrophys. J. 667, 382–394 (2007). https://doi.org/10.1086/520876 CrossRefGoogle Scholar
  463. Sumiyoshi, K., Ishizuka, C., Ohnishi, A., Yamada, S., Suzuki, H.: Emergence of hyperons in failed supernovae: trigger of the black hole formation. Astrophys. J. Lett. 690, L43–L46 (2009). https://doi.org/10.1088/0004-637X/690/1/L43 ADSCrossRefGoogle Scholar
  464. Suwa, Y., Takiwaki, T., Kotake, K., Fischer, T., Liebendörfer, M., Sato, K.: On the importance of the equation of state for the neutrino-driven supernova explosion mechanism. Astrophys. J. 764, 99 (2013). https://doi.org/10.1088/0004-637X/764/1/99 ADSCrossRefGoogle Scholar
  465. Takami, K., Rezzolla, L., Baiotti, L.: Constraining the equation of state of neutron stars from binary mergers. Phys. Rev. Lett. 113(9), 091104 (2014).  https://doi.org/10.1103/PhysRevLett.113.091104 ADSCrossRefGoogle Scholar
  466. Takami, K., Rezzolla, L., Baiotti, L.: Spectral properties of the post-merger gravitational-wave signal from binary neutron stars. Phys. Rev. D 91(6), 064001 (2015).  https://doi.org/10.1103/PhysRevD.91.064001 ADSCrossRefGoogle Scholar
  467. Taranto, G., Baldo, M., Burgio, G.F.: Selecting microscopic equations of state. Phys. Rev. C 87, 045803 (2013). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.87.045803 ADSCrossRefGoogle Scholar
  468. Taranto, G., Burgio, G.F., Schulze, H.J.: Cassiopeia A and direct Urca cooling. Mon. Not. R. Astron. Soc. 456, 1451–1458 (2016).  https://doi.org/10.1093/mnras/stv2756 ADSCrossRefGoogle Scholar
  469. Tauris, T.M., Langer, N., Moriya, T.J., Podsiadlowski, P., Yoon, S.C., Blinnikov, S.I.: Ultra-stripped type IC supernovae from close binary evolution. Astrophys. J. Lett. 778, L23 (2013). https://doi.org/10.1088/2041-8205/778/2/L23 ADSCrossRefGoogle Scholar
  470. Ter Haar, B., Malfliet, R.: Equation of state of nuclear matter in the relativistic Dirac-Brueckner approach. Phys. Rev. Lett. 56, 1237–1240 (1986).  https://doi.org/10.1103/PhysRevLett.56.1237 ADSCrossRefGoogle Scholar
  471. Tews, I., Lattimer, J.M., Ohnishi, A., Kolomeitsev, E.E.: Symmetry parameter constraints from a lower bound on neutron-matter energy. Astrophys. J. 848, 105 (2017). https://doi.org/10.3847/1538-4357/aa8db9 ADSCrossRefGoogle Scholar
  472. Thomas, A.W., Whittenbury, D.L., Carroll, J.D., Tsushima, K., Stone, J.R.: Equation of state of dense matter and consequences for neutron stars. In: European Physical Journal Web of Conferences, vol. 63, p. 03004 (2013).  https://doi.org/10.1051/epjconf/20136303004 CrossRefGoogle Scholar
  473. Todd-Rutel, B.G., Piekarewicz, J.: Neutron-rich nuclei and neutron stars: a new accurately calibrated interaction for the study of neutron-rich matter. Phys. Rev. Lett. 95(12), 122501 (2005).  https://doi.org/10.1103/PhysRevLett.95.122501 ADSCrossRefGoogle Scholar
  474. Togashi, H., Takano, M., Sumiyoshi, K., Nakazato, K.: Application of the nuclear equation of state obtained by the variational method to core-collapse supernovae. Prog. Theor. Exp. Phys. 2014(2), 023D05 (2014).  https://doi.org/10.1093/ptep/ptu020 CrossRefGoogle Scholar
  475. Toki, H., Hirata, D., Sugahara, Y., Sumiyoshi, K., Tanihata, I.: Relativistic many body approach for unstable nuclei and supernova. Nucl. Phys. A 588, c357–c363 (1995). https://doi.org/10.1016/0375-9474(95)00161-S ADSCrossRefGoogle Scholar
  476. Tolman, R.C.: Static solutions of einstein’s field equations for spheres of fluid. Phys. Rev. 55, 364–373 (1939).  https://doi.org/10.1103/PhysRev.55.364 ADSzbMATHCrossRefGoogle Scholar
  477. Trippa, L., Colò, G., Vigezzi, E.: Giant dipole resonance as a quantitative constraint on the symmetry energy. Phys. Rev. C 77(6), 061304 (2008).  https://doi.org/10.1103/PhysRevC.77.061304 ADSCrossRefGoogle Scholar
  478. Trümper, J.E.: Observations of neutron stars and the equation of state of matter at high densities. Prog. Part. Nucl. Phys. 66, 674–680 (2011). https://doi.org/10.1016/j.ppnp.2011.01.018 ADSCrossRefGoogle Scholar
  479. Tsang, M.B., Zhang, Y., Danielewicz, P., Famiano, M., Li, Z., Lynch, W.G., Steiner, A.W.: Constraints on the density dependence of the symmetry energy. Phys. Rev. Lett. 102(12), 122701 (2009).  https://doi.org/10.1103/PhysRevLett.102.122701 ADSCrossRefGoogle Scholar
  480. Tsang, M.B., Stone, J.R., Camera, F., Danielewicz, P., Gandolfi, S., Hebeler, K., Horowitz, C.J., Lee, J., Lynch, W.G., Kohley, Z., Lemmon, R., Möller, P., Murakami, T., Riordan, S., Roca-Maza, X., Sammarruca, F., Steiner, A.W., Vidaña, I., Yennello, S.J.: Constraints on the symmetry energy and neutron skins from experiments and theory. Phys. Rev. C 86(1), 015803 (2012).  https://doi.org/10.1103/PhysRevC.86.015803 ADSCrossRefGoogle Scholar
  481. Typel, S.: Relativistic model for nuclear matter and atomic nuclei with momentum-dependent self-energies. Phys. Rev. C 71(6), 064301 (2005).  https://doi.org/10.1103/PhysRevC.71.064301 ADSCrossRefGoogle Scholar
  482. Typel, S.: Clusters in nuclear matter and the equation of state for astrophysical applications. In: Gonçalves, V.P., da Silva, M.L.L., Thiago de Santana Amaral, J., Machado, M.V.T. (eds.) American Institute of Physics Conference Series, vol. 1520, pp. 68–102 (2013). https://doi.org/10.1063/1.4795946
  483. Typel, S.: Neutron skin thickness of heavy nuclei with α-particle correlations and the slope of the nuclear symmetry energy. Phys. Rev. C 89(6), 064321 (2014).  https://doi.org/10.1103/PhysRevC.89.064321 ADSCrossRefGoogle Scholar
  484. Typel, S., Röpke, G., Klähn, T., Blaschke, D., Wolter, H.H.: Composition and thermodynamics of nuclear matter with light clusters. Phys. Rev. C 81(1), 015803 (2010).  https://doi.org/10.1103/PhysRevC.81.015803 ADSCrossRefGoogle Scholar
  485. Typel, S., Wolter, H.H., Röpke, G., Blaschke, D.: Effects of the liquid-gas phase transition and cluster formation on the symmetry energy. Eur. Phys. J. A 50, 17 (2014).  https://doi.org/10.1140/epja/i2014-14017-x ADSCrossRefGoogle Scholar
  486. Typel, S., Oertel, M., Klähn, T.: CompOSE CompStar online supernova equations of state harmonising the concert of nuclear physics and astrophysics compose.obspm.fr. Phys. Part. Nucl. 46, 633–664 (2015). https://doi.org/10.1134/S1063779615040061 ADSCrossRefGoogle Scholar
  487. Uhlenbeck, G.E., Beth, E.: The quantum theory of the non-ideal gas I. Deviations from the classical theory. Physica 3, 729–745 (1936). https://doi.org/10.1016/S0031-8914(36)80346-2 ADSzbMATHCrossRefGoogle Scholar
  488. Valcarce, A., Garcilazo, H., Fernandez, F., Gonzalez, P.: Quark-model study of few-baryon systems. Rep. Prog. Phys. 68, 965–1042 (2005). https://doi.org/10.1088/0034-4885/68/5/R01 ADSCrossRefGoogle Scholar
  489. van Leeuwen, J. (ed.): Neutron Stars and Pulsars (IAU S291): Challenges and Opportunities after 80 Years. Proceedings of the International Astronomical Union Symposia and Colloquia. Cambridge University Press, Cambridge (2013). https://books.google.fr/books?id=jHX3mgEACAAJ Google Scholar
  490. Vautherin, D., Brink, D.M.: Hartree-fock calculations with Skyrme’s interaction. I. Spherical nuclei. Phys. Rev. C 5, 626–647 (1972). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.5.626 ADSCrossRefGoogle Scholar
  491. Vidaña, I., Logoteta, D., Providência, C., Polls, A., Bombaci, I.: Estimation of the effect of hyperonic three-body forces on the maximum mass of neutron stars. Europhys. Lett. 94, 11002 (2011). https://doi.org/10.1209/0295-5075/94/11002 ADSCrossRefGoogle Scholar
  492. Voskresenskaya, M.D., Typel, S.: Constraining mean-field models of the nuclear matter equation of state at low densities. Nucl. Phys. A 887, 42–76 (2012). https://doi.org/10.1016/j.nuclphysa.2012.05.006 ADSCrossRefGoogle Scholar
  493. Walecka, J.D.: A theory of highly condensed matter. Ann. Phys. 83, 491–529 (1974). https://doi.org/10.1016/0003-4916(74)90208-5 ADSCrossRefGoogle Scholar
  494. Wanajo, S., Sekiguchi, Y., Nishimura, N., Kiuchi, K., Kyutoku, K., Shibata, M.: Production of all the r-process nuclides in the dynamical ejecta of neutron star mergers. Astrophys. J. 789, L39 (2014). https://doi.org/10.1088/2041-8205/789/2/L39 ADSCrossRefGoogle Scholar
  495. Wang, M., Audi, G., Wapstra, A., Kondev, F., MacCormick, M., Xu, X., Pfeiffer, B.: The ame2012 atomic mass evaluation. Chin. Phys. C 36(12), 1603 (2012). http://stacks.iop.org/1674-1137/36/i=12/a=003 CrossRefGoogle Scholar
  496. Wang, S., Zhang, H.F., Dong, J.M.: Neutron star properties in density-dependent relativistic mean field theory with consideration of an isovector scalar meson. Phys. Rev. C 90(5), 055801 (2014).  https://doi.org/10.1103/PhysRevC.90.055801 ADSCrossRefGoogle Scholar
  497. Washiyama, K., Bennaceur, K., Avez, B., Bender, M., Heenen, P.H., Hellemans, V.: New parametrization of Skyrme’s interaction for regularized multireference energy density functional calculations. Phys. Rev. C 86(5), 054309 (2012).  https://doi.org/10.1103/PhysRevC.86.054309 ADSCrossRefGoogle Scholar
  498. Watanabe, G., Iida, K., Sato, K.: Thermodynamic properties of nuclear “pasta” in neutron star crusts. Nucl. Phys. A 676, 455–473 (2000). https://doi.org/10.1016/S0375-9474(00)00197-4 ADSCrossRefGoogle Scholar
  499. Watanabe, G., Sonoda, H., Maruyama, T., Sato, K., Yasuoka, K., Ebisuzaki, T.: Formation of nuclear “Pasta” in supernovae. Phys. Rev. Lett. 103(12), 121101 (2009).  https://doi.org/10.1103/PhysRevLett.103.121101 ADSCrossRefGoogle Scholar
  500. Watts, A., Espinoza, C.M., Xu, R., Andersson, N., Antoniadis, J., Antonopoulou, D., Buchner, S., Datta, S., Demorest, P., Freire, P., Hessels, J., Margueron, J., Oertel, M., Patruno, A., Possenti, A., Ransom, S., Stairs, I., Stappers, B.: Probing the neutron star interior and the Equation of State of cold dense matter with the SKA. In: Advancing Astrophysics with the Square Kilometre Array (AASKA14) 43 (2015). https://doi.org/10.22323/1.215.0043
  501. Weber, F.: Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics. Series in High Energy Physics, Cosmology and Gravitation. Taylor & Francis, Milton Park (1999). https://books.google.fr/books?id=uxHBcb2XHaAC
  502. Weinberg, S.: Nuclear forces from chiral lagrangians. Phys. Lett. B 251, 288–292 (1990). https://doi.org/10.1016/0370-2693(90)90938-3 ADSCrossRefGoogle Scholar
  503. Weinberg, S.: Effective chiral lagrangians for nucleon-pion interactions and nuclear forces. Nucl. Phys. B 363, 3–18 (1991). https://doi.org/10.1016/0550-3213(91)90231-L ADSCrossRefGoogle Scholar
  504. Wellenhofer, C., Holt, J.W., Kaiser, N., Weise, W.: Nuclear thermodynamics from chiral low-momentum interactions. Phys. Rev. C 89(6), 064009 (2014).  https://doi.org/10.1103/PhysRevC.89.064009 ADSCrossRefGoogle Scholar
  505. Whittenbury, D.L., Carroll, J.D., Thomas, A.W., Tsushima, K., Stone, J.R.: Quark-meson coupling model, nuclear matter constraints, and neutron star properties. Phys. Rev. C 89(6), 065801 (2014).  https://doi.org/10.1103/PhysRevC.89.065801 ADSCrossRefGoogle Scholar
  506. Wiringa, R.B., Pieper, S.C.: Evolution of nuclear spectra with nuclear forces. Phys. Rev. Lett. 89(18), 182501 (2002).  https://doi.org/10.1103/PhysRevLett.89.182501 ADSCrossRefGoogle Scholar
  507. Wiringa, R.B., Stoks, V.G.J., Schiavilla, R.: Accurate nucleon-nucleon potential with charge-independence breaking. Phys. Rev. C 51, 38–51 (1995). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.51.38 ADSCrossRefGoogle Scholar
  508. Wiringa, R.B., Schiavilla, R., Pieper, S.C., Carlson, J.: Nucleon and nucleon-pair momentum distributions in A ≤ 12 nuclei. Phys. Rev. C 89(2), 024305 (2014).  https://doi.org/10.1103/PhysRevC.89.024305 ADSCrossRefGoogle Scholar
  509. Worley, A., Krastev, P.G., Li, B.A.: Nuclear constraints on the moments of inertia of neutron stars. Astrophys. J. 685, 390–399 (2008). https://doi.org/10.1086/589823 ADSCrossRefGoogle Scholar
  510. Xiao, Z., Li, B.A., Chen, L.W., Yong, G.C., Zhang, M.: Circumstantial evidence for a soft nuclear symmetry energy at suprasaturation densities. Phys. Rev. Lett. 102(6), 062502 (2009).  https://doi.org/10.1103/PhysRevLett.102.062502 ADSCrossRefGoogle Scholar
  511. Yakovlev, D.G., Pethick, C.J.: Neutron star cooling. Annu. Rev. Astron. Astrophys. 42, 169–210 (2004).  https://doi.org/10.1146/annurev.astro.42.053102.134013 ADSCrossRefGoogle Scholar
  512. Yakovlev, D.G., Kaminker, A.D., Gnedin, O.Y., Haensel, P.: Neutrino emission from neutron stars. Phys. Rep. 354, 1–155 (2001). https://doi.org/10.1016/S0370-1573(00)00131-9 ADSCrossRefGoogle Scholar
  513. Zalewski, M., Olbratowski, P., Satuła, W.: Surface-peaked effective mass in the nuclear energy density functional and its influence on single-particle spectra. Phys. Rev. C 81(4), 044314 (2010).  https://doi.org/10.1103/PhysRevC.81.044314 ADSCrossRefGoogle Scholar
  514. Zhang, Z.W., Shen, H.: Relativistic equation of state at subnuclear densities in the thomas-fermi approximation. Astrophys. J. 788, 185 (2014). https://doi.org/10.1088/0004-637X/788/2/185 ADSCrossRefGoogle Scholar
  515. Zhao, P.W., Li, Z.P., Yao, J.M., Meng, J.: New parametrization for the nuclear covariant energy density functional with a point-coupling interaction. Phys. Rev. C 82(5), 054319 (2010).  https://doi.org/10.1103/PhysRevC.82.054319 ADSCrossRefGoogle Scholar
  516. Zhou, X.R., Burgio, G.F., Lombardo, U., Schulze, H.J., Zuo, W.: Three-body forces and neutron star structure. Phys. Rev. C 69(1), 018801 (2004).  https://doi.org/10.1103/PhysRevC.69.018801 ADSCrossRefGoogle Scholar
  517. Zuo, W., Lejeune, A., Lombardo, U., Mathiot, J.F.: Interplay of three-body interactions in the EOS of nuclear matter. Nucl. Phys. A 706, 418–430 (2002a). https://doi.org/10.1016/S0375-9474(02)00750-9 ADSzbMATHCrossRefGoogle Scholar
  518. Zuo, W., Lejeune, A., Lombardo, U., Mathiot, J.F.: Microscopic three-body force for asymmetric nuclear matter. Eur. Phys. J. A 14, 469–475 (2002b). https://doi.org/10.1140/epja/ i2002-10031-yGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Istituto Nazionale di Fisica NucleareSez. di CataniaCataniaItaly
  2. 2.Grand Accélérateur National d’Ions Lourds (GANIL)CEA/DRF - CNRS/IN2P3CaenFrance

Personalised recommendations