Transition Metal Doped ZnS Monolayer: The First Principles Insights
Conference paper
First Online:
Abstract
Structural and electronic properties of pristine and transition metal doped ZnS monolayer are investigated within the framework of density functional theory. The pristine ZnS monolayer is showing direct band gap of about 2.8 eV. The investigated transition metal doping showed the transition from non-magnetic semiconductor to a magnetic system e.g. magnetic semiconductor for Co doped ZnS and half metal for Ni doped ZnS monolayers. The Co doped ZnS monolayer showed higher formation energy, confirming the strong bonding than that of Ni doped ZnS monolayer. The electron difference density shows the charge sharing between transition metal (Ni and Co) and S, confirming the covalent bond formation.
References
- 1.A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater. 4(1), 42–46 (2005)ADSCrossRefGoogle Scholar
- 2.M.S. Khan, A. Srivastava, R. Chaurasiya, M.S. Khan, P. Dua, NH3 and PH3 adsorption through single walled ZnS nanotube: first principle insight. Chem. Phys. Lett. 636, 103–109 (2015)ADSCrossRefGoogle Scholar
- 3.M. Nguyen, K. Ernits, K.F. Tai, C.F. Ng, S.S. Pramana, W.A. Sasangka, S.K. Batabyal, T. Holopainen, D. Meissner, A. Neisser, L.H. Wong, ZnS buffer layer for Cu2ZnSn(SSe)4 monograin layer solar cell. Sol. Energy 111, 344–349 (2015)ADSCrossRefGoogle Scholar
- 4.A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)ADSCrossRefGoogle Scholar
- 5.S.H. Yu, M. Yoshimura, Shape and phase control of ZnS nanocrystals: template fabrication of Wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellar molecular precursor ZnS·(NH2CH2CH2NH2)0.5. Adv. Mater. 14(4), 296–300 (2002)CrossRefGoogle Scholar
- 6.N. Krainara, J. Limtrakul, F. Illas, S.T. Bromley, Structural and electronic bistability in ZnS single sheets and single-walled nanotubes. Phys. Rev. B. 83(23), 233305 (2011)Google Scholar
- 7.M. Shahrokhi, Quasi-particle energies and optical excitations of ZnS monolayer honeycomb structure. Appl. Surf. Sci. 390, 377–384 (2016)ADSCrossRefGoogle Scholar
- 8.Q. Peng, L. Han, X. Wen, S. Liu, Z. Chen, J. Lian, S. De, Mechanical properties and stabilities of g-ZnS monolayers. RSC Adv. 5(15), 11240–11247 (2015)CrossRefGoogle Scholar
- 9.A. Akhtar, A. Boochani, S.M. Elahi, M. Amiri, M. Molamohammadi, Reflectivity and refractivity index enhancement in H doped ZnS graphene sheet: a first-principles study. Optik. 144, 446–458 (2017)ADSCrossRefGoogle Scholar
- 10.P. Ordejón, E. Artacho, J.M. Soler, Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B. 53(16), R10441 (1996)ADSCrossRefGoogle Scholar
- 11.D. Sánchez-Portal, P. Ordejon, E. Artacho, J.M. Soler, Density-functional method for very large systems with LCAO basis sets. Int. J. Quantum Chem. 65(5), 453–461 (1997)CrossRefGoogle Scholar
- 12.J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14(11), 2745 (2002)ADSCrossRefGoogle Scholar
- 13.H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B. 13(12), 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
- 14.H. Zheng, X.B. Li, N.K. Chen, S.Y. Xie, W.Q. Tian, Y. Chen, H. Xia, S.B. Zhang, H.B. Sun, Monolayer II-VI semiconductors: a first-principles prediction. Phys. Rev. B. 92(11), 115307 (2015)ADSCrossRefGoogle Scholar
- 15.H. Lashgari, A. Boochani, A. Shekaari, S. Solaymani, E. Sartipi, R.T. Mendi, Electronic and optical properties of 2D graphene-like ZnS: DFT calculations. Appl. Surf. Sci. 369, 76–81 (2016)ADSCrossRefGoogle Scholar
- 16.J. Ren, H. Zhang, X. Cheng, Electronic and magnetic properties of all 3d transition-metal-doped ZnO monolayers. Int. J. Quantum Chem. 113(19), 2243–2250 (2013)CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019