Advertisement

Transport Properties of La0.7Sr0.3MnO3/NSTO and La0.7Sr0.3MnO3/ZnO Perovskite Solar Cells

  • Sonu BishnoiEmail author
  • Saurabh Kumar Pandey
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 215)

Abstract

A comprehensive numerical analysis for a Lead- free perovskite solar cell has been carried out using device simulation software. Enumerated study of two types of configurations La0.7Sr0.3MnO3/ZnO (LSMO/ZnO) and La0.7Sr0.3MnO3/Nb–SrTiO3 (LSMO/NSTO) are simulated which gives power conversion efficiency (PCE) of 6.78 and 0.47% after optimizing different parameters using SCAPS-1D numerical simulation. Bandgap analysis of LSMO/NSTO shows 35 and 65% discontinuity in the conduction band and valence band, which directly affect in the collection of charge carriers. While LSMO/ZnO configuration has continuity in the energy bands so large number of carriers collected as compared to NSTO buffer layer and it also leads to higher PCE. Buffer layer thickness optimization is also carried out.

Notes

Acknowledgements

The authors are grateful to the Marc Burgelman University of Gent, Belgium for providing the solar cell capacitor simulator (SCAPS-1D) software used in our simulation.

References

  1. 1.
    N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    O. Grånäs, D. Vinichenko, E. Kaxiras, Establishing the limits of efficiency of perovskite solar cells from first principles modeling. Sci. Rep. 6, 36108(1–6) (2016)Google Scholar
  3. 3.
    A. Babayigit, D.D. Thanh, A. Ethirajan et al., Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio. Sci. Rep. 6(1–11), 18721 (2016)Google Scholar
  4. 4.
    M.I. Ahmed, A. Habib, S.S. Javaid, Perovskite solar cells: potentials, challenges, and opportunities. Int. J. Photo Energy 2015(1–13), 592308 (2015)CrossRefGoogle Scholar
  5. 5.
    S.N. Kale, S. Arora, K.R. Bhayani et al., Cerium doping and NSTO stoichiometric control for biomedical use of La0.7Sr0.3MnO3 nanoparticles: microwave absorption and cytotoxicity study. Nanomed. Nanotechnol. Biol. Med. 2, 217–221 (2006)CrossRefGoogle Scholar
  6. 6.
    S.V. Jadhav, D.S. Nikam, V.M. Khot et al., Studies on the colloidal stability of PVP-coated LSMO nanoparticles for magnetic fluid hyperthermia. New J. Chem. 37, 3121–3130 (2013)CrossRefGoogle Scholar
  7. 7.
    H. Gao et al., Structure and magnetic properties of three-dimensional La1−xSrxMnO3 nanofilms on ZnO nanorod arrays. Appl. Phys. Lett. 98(1–3), 123105 (2011)Google Scholar
  8. 8.
    A. Janotti, B. Jalan, S. Stemmer, C.G. Walle, Effects of doping on the lattice parameter of SrTiO3. Appl. Phys. Lett. 100(1–4), 262104 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Liu, X. Sun, B. Li, Y. Lei, Tunable p–n transition behavior of p-La0.67Sr0.33MnO3/n-CeO2 nanofibers heterojunction for the development of selective high-temperature propane sensors. J. Mater. Chem. A 2, 11651–11659 (2014)CrossRefGoogle Scholar
  10. 10.
    S. Bansal, P. Aryal, Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations, in IEEE 43rd Photovoltaic Specialists Conference (2016), pp. 0747–0750Google Scholar
  11. 11.
    A. Tiwari, C. Jin, D. Kumar, J. Narayan, Rectifying electrical characteristics of La0.7Sr0.3MnO3/ZnO heterostructure. Appl. Phys. Lett. 83, 1773–1775 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    K.X. Jin, S.G. Zhao, C.L. Chen, X.Y. Tan, X.W. Jia, Ultraviolet photovoltage characteristics in ZnO/La0.7Sr0.3MnO3 heterostructure. Appl. Phys. 42(1–4), 015001 (2009)Google Scholar
  13. 13.
    H.Y. Dai, B. Wang et al., Growth of La0.7Sr0.3MnO3 films on Si (0 0 1) using SrMnO3 template layer. Elsevier 80, 914–917 (2006)Google Scholar
  14. 14.
    Jiyon Song et al., Device modeling and simulation of the performance of Cu(In1−xGax)Se2 solar cells. Solid-State Electron. 48, 73–79 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Nima Khoshsirat et al., Analysis of absorber and buffer layer band gap grading on CIGS thin film solar cell performance using SCAPS. Pertanika J. Sci. Technol. 23, 241–250 (2015)Google Scholar
  16. 16.
    A. Janotti, B. Jalan, S. Stemmer, C.G. Walle, Effects of doping on the lattice parameter of SrTiO3. Appl. Phys. Lett. 100(1–4), 262104 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    W.J. Zhon et al., Significant enhancement of photovoltage in artificially designed perovskite oxide structures. Appl. Phys. Lett. 105(1–6), 131109 (2014)Google Scholar
  18. 18.
    A.T. Choi, L. Jiang, S. Lee, T. Egami, H.N. Lee, High rectification and photovoltaic effect in oxide nano-junctions. New J. Phys. 14(1–10), 093056 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    H. Guo et al., The origin of oxygen vacancies controlling La2/3Sr1/3MnO3 electronic and magnetic properties. Adv. Mater. Inter. 3, 1500753 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Xu, T. Gong, J.N. Munday, The generalized Shockley-Queisser limit for nanostructured solar cells. Sci. Rep. 5, 13536 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    M. Mostefaoui, H. Mazar, S. Khelifi, A. Bouraiou, R. Dabou, Simulation of high efficiency CIGS solar cells with SCAPS-1D software. Energy Proc. 74, 736–744 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Sensor and Optoelectronics Research Group (SORG), Electrical Engineering DepartmentIndian Institute of Technology PatnaBiharIndia

Personalised recommendations