Advertisement

Evaluation of Ga:MgZnO/CIGSe Heterojunction for Realization of All Sputtered Buffer-Less Solar Cell

  • Vivek GargEmail author
  • Brajendra S. Sengar
  • Nisheka Anadkat
  • Gaurav Siddharth
  • Shailendra Kumar
  • Shaibal Mukherjee
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 215)

Abstract

In this article, the valence band offset (VBOff) and conduction band offset (CBOff) values of Cu(In0.70Ga0.30)Se/3at.% Ga:Mg0.20Zn0.80O (GMZO) heterojunction, grown by dual ion beam sputtering system (DIBS), are calculated to understand the carrier transport mechanism at the heterojunction for realization of all sputtered buffer-less solar cells.

Notes

Acknowledgements

This work is partially supported by Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), Government of India and Clean Energy Research Initiative (CERI), Department of Science and Technology (DST), Government of India. We are thankful to DIBS, FESEM, EDX and XRD facility equipped at Sophisticated Instrument Centre (SIC) at IIT Indore. The authors Vivek Garg and Brajendra S. Sengar acknowledge UGC and CSIR, respectively India for their fellowships. Nisheka Anadkat and Gaurav Siddharth acknowledge DST INSPIRE and DeitY, respectively for their fellowships. Prof. Shaibal Mukherjee is thankful to DeitY YFRF, Government of India award.

References

  1. 1.
    M.A. Contreras, L.M. Mansfield, B. Egaas, J. Li, M. Romero, R. Noufi, E. Rudiger-Voigt, W. Mannstadt, Wide bandgap Cu(In, Ga)Se2 solar cells with improved energy conversion efficiency. Prog. Photovoltaics Res. Appl. 20(7), 843–850 (2012)CrossRefGoogle Scholar
  2. 2.
    A. Chirilă, S. Seyrling, S. Buecheler, D. Guettler, S. Nishiwaki, Y.E. Romanyuk, G. Bilger, A.N. Tiwari, Influence of high growth rates on evaporated Cu(In, Ga)Se2 layers and solar cells. Prog. Photovoltaics Res. Appl. 20(2), 209–216 (2012)CrossRefGoogle Scholar
  3. 3.
    A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, Highly efficient Cu(In, Ga)Se2 solar cells grown on flexible polymer films. Nat. Mater. 10(11), 857–861 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    N. Naghavi, S. Temgoua, T. Hildebrandt, J.F. Guillemoles, D. Lincot, Impact of oxygen concentration during the deposition of window layers on lowering the metastability effects in Cu(In, Ga)Se2/CBD Zn (S, O) based solar cell. Prog. Photovoltaics Res. Appl. 23(12), 1820–1827 (2015)CrossRefGoogle Scholar
  5. 5.
    T. Kobayashi, Z. Jehl Li Kao, T. Kato, H. Sugimoto, T. Nakada, A comparative study of Cd‐and Zn‐compound buffer layers on Cu (In1−x, Gax)(Sy, Se1−y) 2 thin film solar cells. Prog. Photovolt. Res. Appl. 24, 389 (2015)Google Scholar
  6. 6.
    G. Sozzi, F. Troni, R. Menozzi, On the combined effects of window/buffer and buffer/absorber conduction-band offsets, buffer thickness and doping on thin-film solar cell performance. Sol. Energy Mater. Sol. Cells 121, 126–136 (2014)CrossRefGoogle Scholar
  7. 7.
    T. Minemoto, A. Okamoto, H. Takakura, Sputtered ZnO-based buffer layer for band offset control in Cu(In, Ga)Se2 solar cells. Thin Solid Films 519(21), 7568–7571 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Kuwahata, T. Minemoto, Impact of Zn1-xMgxO: Al transparent electrode for buffer-less Cu(In, Ga)Se2 solar cells. Renew. Energy 65, 113–116 (2014)CrossRefGoogle Scholar
  9. 9.
    T. Minemoto, J. Julayhi, Buffer-less Cu(In, Ga)Se2 solar cells by band offset control using novel transparent electrode. Curr. Appl. Phys. 13(1), 103–106 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    J. Julayhi, T. Minemoto, Buffer-less Cu(In,Ga)Se2 solar cells with Zn(O,S):Al transparent conductive oxide film. Phys. Status Solidi (C) 10(7–8), 1026–1030 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    V. Awasthi, V. Garg, B.S. Sengar, S.K. Pandey, S.A. Kumar, C. Mukherjee, S. Mukherjee, Impact of sputter-instigated plasmonic features in TCO films: for ultrathin photovoltaic applications. Appl. Phys. Lett. 110(10), 103903 (2017)Google Scholar
  12. 12.
    V. Garg, B.S. Sengar, V. Awasthi, A. Shree, P. Sharma, C. Mukherjee, S. Kumar, S. Mukherjee, Localized surface plasmon resonance on au nanoparticles: tuning and exploitation for performance enhancement in ultrathin photovoltaics. RSC Adv. 6, 26216 (2016)CrossRefGoogle Scholar
  13. 13.
    V. Awasthi, S.K. Pandey, V. Garg, B.S. Sengar, P. Sharma, S. Kumar, C. Mukherjee, S. Mukherjee, Plasmon generation in sputtered Ga-doped MgZnO thin films for solar cell applications. J. Appl. Phys. 119(23), 233101 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    B.S. Sengar, V. Garg, V. Awasthi, S.A. Kumar, C. Mukherjee, M. Gupta, S. Mukherjee, Growth and characterization of dual ion beam sputtered Cu2ZnSn(S,Se)4 thin films for cost-effective photovoltaic application. Solar Energy 139, 1–12 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    S.K. Pandey, V. Awasthi, B.S. Sengar, V. Garg, P. Sharma, S. Kumar, C. Mukherjee, S. Mukherjee, Band alignment and photon extraction studies of Na-doped MgZnO/Ga-doped ZnO heterojunction for light-emitter applications. J. Appl. Phys. 118(16), 165301 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    A. Kumar, M. Das, V. Garg, B.S. Sengar, M.T. Htay, S. Kumar, A. Kranti, S. Mukherjee, Forming-free high-endurance Al/ZnO/Al memristor fabricated by dual ion beam sputtering. Appl. Phys. Lett. 110(25), 253509 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    V. Awasthi, S.K. Pandey, S. Kumar, C. Mukherjee, M. Gupta, S. Mukherjee, Evaluation of the band alignment and valence plasmonic features of a DIBS grown Ga-doped Mg0. 05Zn0. 95O/CIGSe heterojunction by photoelectron spectroscopy. J. Phys. D Appl. Phys. 48(48), 485305 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vivek Garg
    • 1
    Email author
  • Brajendra S. Sengar
    • 1
  • Nisheka Anadkat
    • 1
  • Gaurav Siddharth
    • 1
  • Shailendra Kumar
    • 2
  • Shaibal Mukherjee
    • 1
  1. 1.Hybrid Nanodevice Research Group (HNRG)Electrical Engineering, Indian Institute of TechnologyIndoreIndia
  2. 2.Raja Ramanna Center for Advanced TechnologyIndoreIndia

Personalised recommendations