Advertisement

Transport Properties and Sub-band Modulation of the SWCNT Based Nano-scale Transistors

  • Surender Pratap
  • Niladri SarkarEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 215)

Abstract

We apply NEGF formalism on a Single Walled Carbon Nano Tube (SWCNT) based transistor under which it is treated as an open quantum system where the Schrodinger equation for the channel is given as (H + Σ)ψ(r) + (S) = (r). Here, (S) is the source term arising due to the channel/contact hybridization and ‘Σ’ is the self-energy term which is a complex matrix whose real part is related to the corrections in the channel eigenstate energies and imaginary part is related to the broadening of the channel eigenstates. For example, a one-level channel gets hybridized to a Lorentzian density of states under contact.

Keywords

Open quantum system SWCNT Sub-bands NEGF 

Notes

Acknowledgements

This work is supported by the BITS-Pilani Seed Grant Scheme given to N.S. The simulations were performed on IBM rack servers acquired under BITS-Pilani Seed Grant scheme and DST-FIST scheme of Govt. of India. The other author S.P acknowledges BITS-Pilani for his Research Fellowship.

References

  1. 1.
    S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2006)Google Scholar
  2. 2.
    S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1997)Google Scholar
  3. 3.
    D.K. Ferry, S.M. Goodnick, J. Bird, Transport in Nanostructures, 2nd edn. (Cambridge University Press, Cambridge, 2009)CrossRefGoogle Scholar
  4. 4.
    A. Svizhenko, M.P. Anantram, T.R. Govindan, B. Biegel, R. Venogopal, Two dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91, 2343–2354 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    R. Venugopal, Z. Ren, S. Dutta, M.S. Lundstrom, D. Jovanovic, Simulating quantum transport in nano-scale transistors-real verses mode space approach. J. Appl. Phys. 92, 3730–3739 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    R. Venugopal, M. Paulsson, S. Goasguen, S. Datta, M.S. Lundstrom, A simple quantum mechanical treatment of scattering in nanoscale transistors. J. Appl. Phys. 92, 5613–5625 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    J. Guo, M. Lundstrom, Carbon Nanotube Electronics, ed. by A. Javey, J. Kong (Springer, Berlin, 2007)Google Scholar
  8. 8.
    M. Lundstrom, J. Guo, Nanoscale Transistors: Device Physics, Modeling and Simulation (Springer, Berlin, 2006)Google Scholar
  9. 9.
    J. Guo, M. Lundstrom, A Computational Study of Thin-Body, Double-Gate, Schottky Barrier MOSFETs. IEEE Trans. Electron. Dev. 49, 1897–1902 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    J.-H. Rhew, Z. Ren, M. Lundstrom, A Numerical Study of Ballistic Transport in a NanoScale MOSFET. Solid-State Electron. 46, 1899–1906 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    S. Datta, Nanoscale modeling: the Green’s function method. Superlattices Microstruct. 28, 253–278 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    G. Lannaccone, Perspectives and challenges in nanoscale device modeling. Microelectron. J. 36, 614–618 (2005)CrossRefGoogle Scholar
  13. 13.
    R.S. Muller, T.I. Kamins, M. Chan, Device Electronics for Integrated Circuits, 3rd edn. (Wiley, India, 2003)Google Scholar
  14. 14.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969)Google Scholar
  15. 15.
    A. Girdhar, C. Sathe, K. Schulten, J.-P. Leburton, Graphene Quantum Point Contact Transistor for DNA Sensing. PNAS 110, 16748–16753 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    H.-S. Philip Wong, D. Akinwande, Carbon Nanotube and Graphene Device Physics (Cambridge University Press, Cambridge, 2011)Google Scholar
  17. 17.
    F. Schwiertz, Graphene transistor. Nat. Nanotechnol. 5, 487–496 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    I. Meric, M.Y. Han, A.F. Young, B. Ozyilmaz, P. Kim, K.L. Shephard, Current saturation in zero band gap, top-gated graphene field effect transistors. Nat. Nanotechnol. 3, 654–659 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Y.-M. Lin, H.-Y. Chiu, K.A. Jenkins, D.B. Farmer, P. Avouris, A. Valdes-Garcia, Dual gate graphene FETs with fT of 50 GHz. IEEE Elect. Dev. Lett. 31, 68–70 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    G. Liang, N. Neophytou, D.E. Nikonov, M.S. Lundstrom, Performance projections for ballistic graphene nanoribbon FET. IEEE Trans. Elec. Dev. 54, 677–682 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    S. Datta, Steady-state quantum kinetic equation. Phys. Rev. B(R). 40, 5830–5833 (1989)ADSCrossRefGoogle Scholar
  22. 22.
    R. Lake, S. Datta, nonequilibrium Green’s function method applied to double-barrier resonant tunneling diodes. Phys. Rev. B 45, 6670–6686 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    P. Havu, V. Havu, M.J. Puska, R.M. Nieminen, Nonequilibrium transport in two dimensional nanostructures modeled using Green’s function and the finite element method. Phys. Rev. B. 69(115325), 1–13 (2004)Google Scholar
  24. 24.
    J. Wang, E. Polizzi, M. Lundstrom, A three dimensional quantum simulation of silicon nanowire transistor with effective mass approximation. J. Appl. Phys. 96, 2192–2203 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    S.E. Laux, A. Kumar, M.V. Fischetti, Analysis of quantum ballistic electron transport in ultra small silicon devices including space charge and geometric effects. J. Appl. Phys. 95, 5545–5582 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    H. Li, G. Li, Analysis of ballistic transport in nanoscale devices. J. Appl. Phys. 116(084501), 1–14 (2014)Google Scholar
  27. 27.
    A.I. Khan, M.K. Ashraf, A. Haque, Wave function penetration effects in double gate metal oxide semiconductors field effect transistors. J. Appl. Phys. 105(064505), 1–5 (2009)Google Scholar
  28. 28.
    A. Trellakis, A.T. Galick, A. Pacelli, U. Ravaioli, Iteration scheme for the solution of two dimensional schrodinger-poisson equations in quantum structures. J. Appl. Phys. 81, 7880–7884 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    O. Kurniawan, P. Bai, E. Li, Ballistic calculations of nonequilibrium Green’s function in nanoscale devices using finite element method. J. Phys. D: Appl. Phys. 105109, 1–11 (2009)Google Scholar
  30. 30.
    T. Kubis, P. Vogl, Assessment of approximations in nonequilibrium Green’s function theory. Phys. Rev. B. 83(195304), 1–12 (2011)Google Scholar
  31. 31.
    F.O. Heinza, A. Schenk, Self consistent modeling of longitudinal quantum effects in nanoscale double gate metal oxide semiconductor field effect transistor. J. Appl. Phys. 100(084314), 1–8 (2006)Google Scholar
  32. 32.
    G.S.H. Pau, Reduced basis method for simulation of nanodevices. Phys. Rev. B. 78(155425), 1–14 (2008)Google Scholar
  33. 33.
    E. Polizzi, N. Ben, Abdallah, Self consistent three dimensional models for quantum ballistic transport in open systems. Phys. Rev. B 66(245301), 1–9 (2002)Google Scholar
  34. 34.
    L.R. Ram-Mohan, K.H. Yoo, J. Moussa, Schrodinger-poisson self consistency in layered quantum semiconductor structures. J. Appl. Phys. 95, 3081–3092 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    S. Datta, Electrical resistance: an atomistic view. Nanotechnology 15, S433–S451 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    A. Jorio, M.S. Dresselhaus, G. Dresselhaus (eds.), Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, Berlin, Heidelberg, 2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsBirla Institute of Technology & Science, PilaniPilaniIndia

Personalised recommendations