ZigZag Phosphorene Nanoribbons Antidot—Electronic Structure and Device Application
Abstract
In this work, we explored the effect of antidots in phosphorene nanoribbons (PNRs) on nanoscale devices. Similar to graphene, the performance of PNRs transistor can be improved with antidots. In present work, we extensively studied the electronic and transport properties of Zigzag-PNRs antidot lattice. Transport simulation results show that the Negative Differential Resistance (NDR) region appearing for antidot device with higher current than that of ZPNRs devices without antidot. This makes the possibility to design device with enhanced transport properties to yield higher on current.
Notes
Acknowledgements
This work was supported in parts by DST Fast track scheme for Young Scientists (SERB/F/6663/2015-16) and DST Extra Mural funding scheme(SERB/F/4240/2016-17). Authors would like to thank SERB and SASTRA University for their support.”
References
- 1.A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)ADSCrossRefGoogle Scholar
- 2.A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)ADSCrossRefGoogle Scholar
- 3.M.Y. Han, B. Ozyilmaz, Y. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)ADSCrossRefGoogle Scholar
- 4.S. Bagheri, N. Mansouri, E. Aghaie, Phophorene: a new competitor for graphene. Int. J. Hydrogen Energy 41, 4085–4405 (2016)CrossRefGoogle Scholar
- 5.V. Sorkin, H. Pan, H. Shi, S.Y. Quek, Y.W. Zhang, Nanoscale transition metal dichalcogenides: structures, properties, and applications. Crit. Rev. Solid State Mater. Sci. 39, 319–367 (2014)ADSCrossRefGoogle Scholar
- 6.H. Du, X. Lin, Z. Xu, D. Chu, Recent developments in black phosphorous transistors. J. Mater. Chem. C 3, 8760–8775 (2015)CrossRefGoogle Scholar
- 7.L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014)ADSCrossRefGoogle Scholar
- 8.W. Zhu, M.N. Yogeesh, S. Yang, S.H. Aldave, J.-S. Kim, S. Sonde, L. Tao, N. Lu, D. Akinwande, Flexible black phosphorus ambipolar transistors, circuits and am demodulator. Nano Lett. 15(3), 1883–1890 (2015)ADSCrossRefGoogle Scholar
- 9.X. Han, H.M. Stewart, S.A. Shevlin, C.R.A. Catlow, Z.X. Gup, Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. Nano Lett. 14(8), 4607–4614 (2014)ADSCrossRefGoogle Scholar
- 10.Q. Wu, L. Shen, M. Yang, Z. Huang, Y.P. Feng, Electronic and transport properties of phosphorene nanoribbons. Phys Rev. B 90, 0354436 (2015)Google Scholar
- 11.L. Rosales, M. Pacheo, Z. Barticevic, A. Leon, A. Latge, P.A. Orellana, Transport properties of antidot superlattices of graphene nanoribbons. Phys. Rev. B 80, 073402 (2009)ADSCrossRefGoogle Scholar
- 12.A. Pechia, A. Di Carlo, Atomistic theory of transport in organic and inorganic structures. Rep. Prog. Phys. 67(18), 1497 (2014)ADSGoogle Scholar
- 13.M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Density functional method for non-equilibrium electron transport. Phys. Rev. B 65(16), 165401 (2002)ADSCrossRefGoogle Scholar
- 14.J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)ADSCrossRefGoogle Scholar
- 15.C. Zhang, G. Xiang, M. Lan, Z. Tang, L. Deng, X. Zhang, Homostructured negative differential resistance device based on Zigzag phosphorene nanoribbons. RSC Adv. 5, 40358 (2015)CrossRefGoogle Scholar