Advertisement

Light Emitting Diode and UV Photodetector Characteristics of Solution Processed n-ZnO Nanorods/p-Si Heterostructures

  • Chandni Kumari
  • Ambesh DixitEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 215)

Abstract

n-ZnO nanorod/p-si hetrojunction diode is synthesized using a simple chemical solution method on p-type silicon substrates for light emitting diode applications. The grown ZnO nanorods showed highly textured hexagonal crystallographic phase along c-axis. An intense band to band photoluminescence peak is observed at 377 nm in conjunction with the weak deep-level emissions in visible region centred at 500 nm. The current–voltage measurements show diode-like characteristics. The work will also discuss the emission response with bias field for these solution processed n-ZnO/p-Si heterostructures under dark and UV conditions in the context of possible UV photo-response and light emitting diode applications.

Keywords

Diode LEDs Nanorods ZnO 

References

  1. 1.
    S.J. Pearton, D.P. Norton, K. Ip et al., Recent progress in processing and properties of ZnO. Prog. Mater. Sci. 50, 293–340 (2005).  https://doi.org/10.1016/j.pmatsci.2004.04.001CrossRefGoogle Scholar
  2. 2.
    Ü. Özgür, Y.I. Alivov, C. Liu et al., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 1–103 (2005).  https://doi.org/10.1063/1.1992666CrossRefGoogle Scholar
  3. 3.
    M.H. Huang, Room-Temperature Ultraviolet Nanowire Nanolasers. Science. 292, 1897–1899 (2001).  https://doi.org/10.1126/science.1060367ADSCrossRefGoogle Scholar
  4. 4.
    J.H. Choy, E.S. Jang, J.H. Won et al., Soft solution route to directionally grown ZnO Nanorod arrays on si wafer; room-temperature ultraviolet laser. Adv. Mater. 15, 1911–1914 (2003).  https://doi.org/10.1002/adma.200305327CrossRefGoogle Scholar
  5. 5.
    W.I. Park, D.H. Kim, S.W. Jung, G.C. Yi, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett. 80, 4232–4234 (2002).  https://doi.org/10.1063/1.1482800ADSCrossRefGoogle Scholar
  6. 6.
    Park W. Il, G.C. Yi, M. Kim, S.J. Pennycook, ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv. Mater. 14, 1841–1843 (2002).  https://doi.org/10.1002/adma.200290015CrossRefGoogle Scholar
  7. 7.
    W.Z. Xu, Z.Z. Ye, Y.J. Zeng et al., ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Appl. Phys. Lett. 88, 2004–2007 (2006).  https://doi.org/10.1063/1.2199588CrossRefGoogle Scholar
  8. 8.
    A. Tsukazaki, M. Kubota, A. Ohtomo, et al., Blue light-emitting diode based on ZnO. Japn. J. Appl. Phys. Part 2 Lett. 44 (2005).  https://doi.org/10.1143/jjap.44.l643ADSCrossRefGoogle Scholar
  9. 9.
    P. Zu, Z.K. Tang, G.K.L. Wong et al., Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature. Solid State Commun. 103, 459–463 (1997).  https://doi.org/10.1016/S0038-1098(97)00216-0ADSCrossRefGoogle Scholar
  10. 10.
    Y. Sun, J.B. Ketterson, G.K.L. Wong, Excitonic gain and stimulated ultraviolet emission in nanocrystalline zinc-oxide powder. Appl. Phys. Lett. 77, 2322 (2000).  https://doi.org/10.1063/1.1316069ADSCrossRefGoogle Scholar
  11. 11.
    D. Bagnall, Y. Chen, Z. Zhu et al., High temperature excitonic stimulated emission from ZnO epitaxial layers. Appl. Phys. Lett. 73, 1038–1040 (1998).  https://doi.org/10.1063/1.122077ADSCrossRefGoogle Scholar
  12. 12.
    A.B. Djurišić, W.C.H. Choy, V.A.L. Roy et al., Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures. Adv. Funct. Mater. 14, 856–864 (2004).  https://doi.org/10.1002/adfm.200305082CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology JodhpurJodhpurIndia
  2. 2.Center for Solar EnergyIndian Institute of Technology JodhpurJodhpurIndia

Personalised recommendations