Light Emitting Diode and UV Photodetector Characteristics of Solution Processed n-ZnO Nanorods/p-Si Heterostructures
Conference paper
First Online:
Abstract
n-ZnO nanorod/p-si hetrojunction diode is synthesized using a simple chemical solution method on p-type silicon substrates for light emitting diode applications. The grown ZnO nanorods showed highly textured hexagonal crystallographic phase along c-axis. An intense band to band photoluminescence peak is observed at 377 nm in conjunction with the weak deep-level emissions in visible region centred at 500 nm. The current–voltage measurements show diode-like characteristics. The work will also discuss the emission response with bias field for these solution processed n-ZnO/p-Si heterostructures under dark and UV conditions in the context of possible UV photo-response and light emitting diode applications.
Keywords
Diode LEDs Nanorods ZnOReferences
- 1.S.J. Pearton, D.P. Norton, K. Ip et al., Recent progress in processing and properties of ZnO. Prog. Mater. Sci. 50, 293–340 (2005). https://doi.org/10.1016/j.pmatsci.2004.04.001CrossRefGoogle Scholar
- 2.Ü. Özgür, Y.I. Alivov, C. Liu et al., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 1–103 (2005). https://doi.org/10.1063/1.1992666CrossRefGoogle Scholar
- 3.M.H. Huang, Room-Temperature Ultraviolet Nanowire Nanolasers. Science. 292, 1897–1899 (2001). https://doi.org/10.1126/science.1060367ADSCrossRefGoogle Scholar
- 4.J.H. Choy, E.S. Jang, J.H. Won et al., Soft solution route to directionally grown ZnO Nanorod arrays on si wafer; room-temperature ultraviolet laser. Adv. Mater. 15, 1911–1914 (2003). https://doi.org/10.1002/adma.200305327CrossRefGoogle Scholar
- 5.W.I. Park, D.H. Kim, S.W. Jung, G.C. Yi, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett. 80, 4232–4234 (2002). https://doi.org/10.1063/1.1482800ADSCrossRefGoogle Scholar
- 6.Park W. Il, G.C. Yi, M. Kim, S.J. Pennycook, ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv. Mater. 14, 1841–1843 (2002). https://doi.org/10.1002/adma.200290015CrossRefGoogle Scholar
- 7.W.Z. Xu, Z.Z. Ye, Y.J. Zeng et al., ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Appl. Phys. Lett. 88, 2004–2007 (2006). https://doi.org/10.1063/1.2199588CrossRefGoogle Scholar
- 8.A. Tsukazaki, M. Kubota, A. Ohtomo, et al., Blue light-emitting diode based on ZnO. Japn. J. Appl. Phys. Part 2 Lett. 44 (2005). https://doi.org/10.1143/jjap.44.l643ADSCrossRefGoogle Scholar
- 9.P. Zu, Z.K. Tang, G.K.L. Wong et al., Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature. Solid State Commun. 103, 459–463 (1997). https://doi.org/10.1016/S0038-1098(97)00216-0ADSCrossRefGoogle Scholar
- 10.Y. Sun, J.B. Ketterson, G.K.L. Wong, Excitonic gain and stimulated ultraviolet emission in nanocrystalline zinc-oxide powder. Appl. Phys. Lett. 77, 2322 (2000). https://doi.org/10.1063/1.1316069ADSCrossRefGoogle Scholar
- 11.D. Bagnall, Y. Chen, Z. Zhu et al., High temperature excitonic stimulated emission from ZnO epitaxial layers. Appl. Phys. Lett. 73, 1038–1040 (1998). https://doi.org/10.1063/1.122077ADSCrossRefGoogle Scholar
- 12.A.B. Djurišić, W.C.H. Choy, V.A.L. Roy et al., Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures. Adv. Funct. Mater. 14, 856–864 (2004). https://doi.org/10.1002/adfm.200305082CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019